Ремонт блока питания. Ремонт импульсных блоков питания Блок питания s35 12 неисправности перезаряжания

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Как отремонтировать и доработать импульсный блок питания китайского производства на 12 вольт

Хочу начать с того, что ко мне в руки попали несколько сгоревших и кем-то уже «поремонтированных» блоков питания 220/12 В. Все блоки были однотипными – HF55W-S-12, поэтому, забив в поисковике название, я надеялся найти схему. Но кроме фотографий внешнего вида, параметров и цен на них, ничего не нашел. Поэтому пришлось схему рисовать самому с платы. Схема рисовалась не для изучения принципа работы БП, а исключительно в ремонтных целях. Поэтому сетевой выпрямитель не нарисован, так-же я не распиливал импульсный трансформатор и не знаю в каком месте сделан отвод (начало-конец) на 2 обмотке трансформатора. Так же не надо считать опечаткой С14 -62 Ома, – на плате маркировка и разметка под электролитический конденсатор (+ показан на схеме), но везде на его месте стояли резисторы номиналом 62 Ома.

При ремонте подобных устройств их нужно подключать через лампочку (лампа накаливания 100-200 Вт, последовательно с нагрузкой), что-бы в случае КЗ в нагрузке, не вышел из строя выходной транзистор и не погорели дорожки на плате. Да и вашим домочадцам спокойнее, если вдруг внезапно не погаснет свет в квартире.
Основной неисправностью является пробой Q1 (FJP5027 – 3 А,800 В, 15 мГц) и как следствие – обрыв резисторов R9, R8 и выход из строя Q2 (2SC2655 50 В\2 А 100 мГц). На схеме они выделены цветом. Q1 можно заменить любым подходящим по току и напряжению транзистором. Я ставил BUT11, BU508. Если мощность нагрузки не будет превышать 20 Вт можно ставить даже J1003, которые можно найти на плате от перегоревшей энергосберегающей лампы. В одном блоке совсем отсутствовал VD-01 (диод шоттки STPR1020CT -140 В\2х10 А) я поставил вместо него MBR2545CT (45 В\30 А), что характерно, он вообще не греется на нагрузке 1,8 А (использовалась лампа автомобильная 21 Вт\12 В). А родной диод за минуту работы (без радиатора) разогревается так, что рукой невозможно дотронуться. Проверил потребляемый устройством (с лампой 21 Вт) ток с родным диодом и с MBR2545CT – ток (потребляемый из сети, у меня напряжение 230 В) понизился с 0,115 А до 0,11 А. Мощность снизилась на 1,15 Вт, я считаю, что именно столько рассеивалось на родном диоде.
Заменить Q2 было нечем, под рукой нашелся транзистор С945. Пришлось “умощнить” его схемой с транзистором КТ837 (рис 2) . Ток остался под контролем и при сравнении тока с родной схемой на 2SC2655, получилось ещё снижение потребляемой мощности c той же нагрузкой на 1 Вт.

В результате, при нагрузке 21 Вт и при работе в течении 5 мин, выходной транзистор и выпрямительный диод (без радиатора) нагреваются градусов до 40 (чуть тёплые). В первоначальном варианте, через минуту работы без радиатора, до них нельзя было дотронуться. Следующим шагом к повышению надёжности блоков сделанных по этой схеме – это замена электролитического конденсатора С12 (склонного к высыханию электролита со временем) на обычный неполярный -неэлектролитический. Таким же номиналом 0,47 мкФ и напряжением не ниже 50 В.
С такими характеристиками БП, теперь можно смело подключать светодиодные ленты, не боясь что КПД блока питания ухудшит эффект экономичности светодиодного освещения.

В современной бытовой электронике активно применяются блоки питания импульсного типа (ИБП). Они необходимы для выпрямления и понижения входного напряжения до заданной величины. Несмотря на довольно высокую надежность, ИБП могут выходить из строя. Если пользователь обладает определенными знаниями в области электроники, тогда он сможет провести ремонт импульсного блока питания на 12 вольт самостоятельно.

Большинство питающих устройств основаны на типовых схемах и имеют похожие неисправности. Если у человека есть хотя бы базовые знания в области электроники, то он может попытаться восстановить ИБП своими руками . Так как некоторые детали источника питания находятся под напряжением, даже при первичном осмотре необходимо быть осторожным.

В высоковольтных ИБП для преобразования переменного напряжения в постоянное используются диодные мосты. Также в конструкции блока питания предусмотрен сглаживающий конденсатор. Так как высокое напряжение преобразуется в импульсное с частотой от 10 до 100 кГц, то появилась возможность отказаться от использования крупногабаритных понижающих низкочастотных трансформаторов. Вместо них сейчас применяются импульсные устройства, отличающиеся небольшими размерами.

В низковольтных ИБП напряжение сначала снижается до необходимого значения, а затем выполняется его выпрямление, стабилизация и сглаживание. В результате удается получить тот показатель напряжения, который необходим для работы аппаратуры. Для повышения надежности устройств питания и получения стабильных параметров на выходе в их конструкции присутствуют различные управляющие схемотехнические решения.

Следует помнить, что не каждый блок питания может быть отремонтирован. Сегодня многие производители выпускают электронные устройства, в которых блоки подлежат комплектной замене. В них печатные платы нередко заливаются компаундным раствором. В такой ситуации даже профессионалы не берутся за восстановление ИБП.

Наиболее распространенные неисправности импульсных блоков питания чаще всего вызваны:

Возможны и другие причины выхода из строя этого устройства, но обнаружить их можно только при использовании специальных приборов, например, осциллографа. В такой ситуации к мастеру, выполняющему ремонт устройства, предъявляются высокие требования. Если причина поломки ИБП не связана с четырьмя наиболее распространенными неисправностями, то стоит обратиться за помощью к профессионалу.

Проблемы с работой высоковольтной секции обнаружить довольно просто. Для их диагностики достаточно проверить напряжение после предохранителя. Если входное напряжение на низковольтной секции есть, а выходное отсутствует, то причину неисправности необходимо искать именно здесь.

При выходе из строя предохранителя нужно осмотреть плату. Сгоревший конденсатор можно определить по вздутию его корпуса. Чтобы проверить диодный мост, установленный в высоковольтной секции, необходимо выпаять каждый составляющий элемент, после чего исследовать устройство с помощью мультиметра.

Чтобы исключить возможность появления повторной неисправности после ремонта, нужно проверить все детали. Выполнив эти работы, можно переходить к проверке ИБП. Для выявления сгоревшего дросселя необходимо тестером проверить катушки всех элементов. Если подобрать требуемую деталь для замены не получается, тогда можно самостоятельно перемотать сгоревшую. Однако это довольно сложный процесс, поэтому порой проще купить новый блок питания.

Восстановление стандартных устройств

Чаще всего в домашних условиях предпринимаются попытки восстановить блоки питания телевизоров и компьютеров. Желательно предварительно найти схему конкретного устройства. Прежде всего это касается телевизоров с кинескопами, так как их ИБП выдают широкий диапазон напряжений. С десктопными ПК проще, ведь их питающие блоки изготовлены по типовой схеме.

О проблемах с блоком питания свидетельствует неработающий светодиод «спящего» режима. Сначала следует проверить работоспособность сетевого шнура. Если проблема обнаружена не была, тогда можно приступить к предварительным ремонтным работам:

Если визуальный осмотр не дал положительных результатов, то последовательно проверяются предохранитель, диоды, конденсаторы и транзисторы. Установить работоспособность микросхем довольно сложно.

Среди основных неисправностей питающих блоков ТВ можно отметить:

Все эти детали, кроме диодов, можно проверить непосредственно на плате. После замены неисправных элементов вместо предохранителя подключается обычная лампа накаливания, и телевизор подключается к сети. Здесь возможны следующие варианты поведения восстановленного агрегата:

  1. Светодиод «спящего» режима включается, а лампа загорается и начинает затухать. Одновременно с этим на экране появляется растр. В этом случае необходимо проверить показатель напряжения строчной развертки. Если его значение оказалось повышенным, то причина может заключаться в неисправных конденсаторах или оптронных парах.
  2. Когда светодиод не загорается, растр на экране отсутствует, а лампа вспыхает и гаснет, то нерабочим является генератор импульсов. В такой ситуации нужно проверить напряжение на конденсаторе. Если его значение оказалось менее 280 В, тогда может быть пробит один из диодов моста либо вышел из строя конденсатор.
  3. Когда лампа горит ярко, нужно снова проверить все элементы ИБП.

Этот алгоритм действий позволит выявить основные неполадки питающего блока телевизора.

Десктопный компьютер

Следует помнить, что ремонт импульсных блоков питания с ШИМ-контроллером отличается сложностью, поэтому в некоторых ситуациях стоит просто заменить ИБП. Именно такие питающие устройства устанавливаются в современные десктопные ПК. О наличии проблемы свидетельствуют следующие признаки:

Для проведения ремонтных работ необходимо извлечь из системного блока ИБП и снять с него кожух. Затем нужно с плат и деталей удалить пыль с помощью кисточки. После этого проводится визуальный осмотр элементов блока, затем к нему подключается нагрузка. Алгоритм дальнейших действий аналогичен ремонту телевизора.

Если из строя вышли транзисторы генератора импульса или ШИМ-контроллер, то стоит просто купить новый ИБП. Это довольно сложное устройство и ремонт импульсных блоков питания такого типа самостоятельно выполнить тяжело.

При проведении ремонтных работ необходимо соблюдать правила безопасности и проявить осторожность. Также стоит правильно оценить свои возможности, ведь порой лучше обратиться к профессионалам.

Причина отказа блока питания, или почему техника перестает работать. С недавних пор, стал все чаще замечать, что люди стали обращаться, да и сам попадаю, на странный и однообразный ремонт техники. Все начинается примерно по одному сценарию - работал себе аппарат год или два и тут вдруг начал включаться медленно, или вообще не запускаться, или же при включение выключается резко, или же пытается включиться но не включается! В общем берем тестер и измерением напряжения на нем, точнее на выходных клеммах, оно как правило находится в допустимых рамках, или как вариант отличается на 0.3-0.4 вольт в меньшую сторону, например у 12 вольтовых блоках питания оно как правило 11.4 вольта.

А вот если проверить осциллографом, или простым тестером из динамика, то слышны высокочастотные пульсации, поэтому без сглаживания эта аппаратура с таким питанием не может работать!

Такие конденсаторы, как правило, внешне заметно на крышке вздуваются или взрываются вообще, при проверки могут показать заметное уменьшение ёмкости - вместо 1000 мкф будет 120-150 мкф, или того меньше, или же в тестере конденсатор может определиться вообще как другой элемент.

При таком чуде, когда конденсатор вдруг стал резистором либо диодом, блок питания пытается включиться, но токи становятся высокими и в крупных фирменных телевизорах такие блоки уходят в защиту. При новой попытки включить все повторяется по кругу...

Часто замену фильтрующего конденсатора можно выполнить увеличенной емкостью, например вместо батареи из трех конденсаторов редкой емкости в 1500 мкф, можно поставить в 4000 мкф. Главное проверить потом стабильность работы прибора и уровень пульсаций, чтобы все было в норме, ну и чтоб конденсатор был на нужное напряжение, или лучше с запасом по напряжению, тогда он будет дополнительно защищен от перепадов.

Видеокамеры, как и автомобили, сейчас уже перестали быть предметами роскоши и перешли в разряд необходимых приборов. Но, если сама видеокамера изготовлена качественно и выход её из строя без каких-либо внешних причин – явление нечастое, то с блоками питания к ним всё как раз наоборот – «горят» они с завидным постоянством. И если ЗУ от сотовых телефонов мы покупаем, не задумываясь, то приобретение блока питания на нужное напряжение и силу тока может вызвать некоторые проблемы.

Тем не менее, отказавший импульсный блок питания нередко можно восстановить самостоятельно.

На фото – неисправный импульсный блок питания, модель FC-2000. Выходное напряжение БП – 12 вольт при нагрузке до 2 А, что вполне достаточно для питания одной-двух видеокамер. После двух с половиной лет работы в круглосуточном режиме на его выходе напряжение пропало полностью.

Вскрыв корпус неисправного БП, мы обнаружим плату с установленными на ней деталями – среди них электролитический конденсатор ёмкостью от 10 до 47-68 мкФ и с рабочим напряжением 400-450 вольт; на его выводах даже спустя несколько минут остаётся достаточно большой заряд. Поэтому в первую очередь нужно закоротить его выводы через сопротивление номиналом в несколько кОм и мощностью выше 0,5Вт. Напрямую закорачивать выводы конденсатора нельзя, это может вывести его из строя. На фото в красном прямоугольнике – именно эта деталь. Поскольку донышко конденсатора вспучено, можно говорить о том, что первая неисправность обнаружена.

Кроме упомянутого выше конденсатора фильтра сетевого выпрямителя, проверке подлежат и такие детали, как предохранитель, выпрямительный мост (может быть установлен либо выпрямительный блок, либо четыре отдельных диода, как на фото) и транзисторный ключ – на фото они заключены в зелёные прямоугольники.

Рабочее напряжение нового конденсатора должно быть не ниже того, на которое был рассчитан заменяемый. Для проверки можно обойтись меньшей ёмкостью, но для обеспечения нормального режима работы блока питания этот параметр должен быть либо таким же, либо выше на одну позицию (т.е. ёмкость с 33 мкФ можно увеличить до 47 мкФ).

Поскольку в описываемом случае детали высоковольтного выпрямителя и транзистор оказались исправными, то подаём на его вход сетевое напряжение. Если же пришлось менять диоды или транзистор, первое включение БП следует делать через последовательно подключённую лампу накаливания мощностью 25-40 Вт – благодаря этому при наличии скрытых неисправностей величина протекающего по цепям первичного питания тока не окажется фатальной.

Подключаем к выводам вольтметр – напряжение в пределах нормы. Однако, подключив даже небольшую нагрузку, напряжение на выходе стало скачкообразно меняться от 5 до 11 вольт, что говорит о неисправности цепей стабилизации.

Дальнейшая проверка выявила неисправность ещё одного электролитического конденсатора, установленного в цепи оптрона PC 817.

Судя по фото, конденсатор потерял около 90 % своей ёмкости.

После установки новых деталей тщательно смываем ацетоном или спиртом остатки флюса (канифоли, паяльной пасты и т.п.), чтобы избежать утечек тока и возможного пробоя и выгорания материала самой платы.

Снова проверяем блок питания. На этот раз к его выводам подключена автомобильная лампа мощностью 21 Вт и током потребления около 2 ампер – БП рассчитан именно на такой номинальный рабочий ток. Как видно на фото, со своей задачей он справился на «отлично», лампочка ярко горит, к тому же удалось сэкономить 200-300 рублей и время, которое было бы потрачено на поиски нового импульсного блока питания.

Loading...Loading...