Мощный трансформатор тесла своими руками. Как изготовить простую катушку тесла в домашних условиях

Идея получения «бестопливного» электричества в домашних условиях чрезвычайно интересна. Любое упоминание о действующей технологии мгновенно приковывает внимание людей, желающих безвозмездно получить в свое распоряжение упоительные возможности энергетической независимости. Чтобы сделать правильные выводы по данной тематике, необходимо изучить теорию и практику.

Генератор собрать можно без больших затруднений, в любом гараже

Как создать вечный генератор

Первое, что приходит на ум при упоминании подобных устройств, это изобретения Тесла. Этого человека нельзя назвать фантазером. Наоборот, он известен своими проектами, которые были успешно реализованы на практике:

  • Он создал первые трансформаторы и генераторы, работающие на токах высокой частоты. Фактически он основал соответствующее направление электротехнического ВЧ оборудования. Некоторые результаты его экспериментов используются до сих пор в правилах безопасности.
  • Тесла создал теорию, на базе которой появились конструкции электрических машин многофазного типа. Многие современные электродвигатели созданы на основе его разработок.
  • Многие исследователи справедливо полагают, что передачу информации на расстояние с помощью радиоволн также изобрел Тесла.
  • Его идеи были реализованы в патентах знаменитого Эдисона, как утверждают историки.
  • Гигантские башни, генераторы энергии, которые были построены Тесла, использовались для множества экспериментов, фантастических даже по современным меркам. Они создавали полярное сияние на широте Нью-Йорка и вызывали вибрации, сопоставимые по силе с мощными природными землетрясениями.
  • Тунгусский метеорит, говорят, был в действительности результатом эксперимента изобретателя.
  • Небольшая черная коробочка, которую Тесла установил в серийный автомобиль с электромотором, обеспечивала полноценное многочасовое питание техники без аккумуляторов и проводов.

Опыты в районе Тунгуски

Здесь перечислена только часть изобретений. Но даже краткие описания некоторых из них позволяют предположить, что Тесла своими руками создал «вечный» двигатель. Впрочем, сам изобретатель использовал для расчетов не заклинания и чудеса, но вполне материалистичные формулы. Следует отметить, однако, что они описывали теорию эфира, которая не признается современной наукой.

Для проверки на практике можно использовать типовые схемы приборов.

Если с помощью осциллографа сделать измерения колебаний, которые образует «классическая» катушка Тесла, будут сделаны интересные выводы.

Осциллограммы напряжений при разных видах индуктивной связи

Сильная связь индуктивного типа обеспечена стандартным способом. Для этого в каркас устанавливается сердечник из трансформаторного железа, или другого подходящего материала. В правой части рисунка приведены соответствующие колебания, результаты измерений на первичной и вторичной катушке. Явно видна корреляция процессов.

Теперь нужно обратить внимание на левую часть рисунка. После подачи на первичную обмотку кратковременного импульса колебания постепенно затухают. Однако на второй катушке зарегистрирован иной процесс. Колебания здесь имеют явно выраженную инерционную природу. Они не затухают еще некоторое время без внешней подпитки энергией. Тесла полагал, что данный эффект объясняет наличие эфира, среды с уникальными свойствами.

В качестве прямых доказательств этой теории приводят следующие ситуации:

  • Самостоятельный заряд конденсаторов, не подсоединенных к источнику энергии.
  • Существенное изменение нормальных параметров электростанций, которое вызывает реактивная мощность.
  • Появление коронных разрядов на неподключенной к сети катушке, при размещении ее на большом расстоянии от работающего аналогичного устройства.

Последний из процессов происходит без дополнительных затрат энергии, поэтому следует рассмотреть его более внимательно. Ниже приведена принципиальная схема катушек Тесла, которую можно собрать без больших затруднений своими руками дома.

Принципиальная схема катушек Тесла

В следующем перечне приведены основные параметры изделий и особенности, которые надо учитывать в процессе монтажа:

  • Для крупной конструкции первичной обмотки понадобится трубка из меди, диаметром около 8 мм. Эта катушка состоит из 7-9 витков, укладывающихся с расширением по спирали в верхнюю сторону.
  • Вторичную обмотку можно сделать на каркасе из полимерной трубы (диаметр от 90 до 110 мм). Хорошо подходит фторопласт. Этот материал обладает отличными изоляционными характеристиками, сохраняет целостность структуры изделия в широком диапазоне температур. Проводник подбирают такой, чтобы сделать 900-1100 витков.
  • Внутри трубы помещают третью обмотку. Чтобы собрать ее правильно, используют многожильный провод в толстой оболочке. Площадь сечения проводника должна быть 15-20 мм 2 . От количества ее витков будет зависеть величина напряжения на выходе.
  • Для точной настройки резонанса все обмотки настраиваются на одну частоту с применением конденсаторов.

Практическая реализация проектов

Приведенный в предыдущем пункте пример описывает только часть устройства. Там нет точного указания электрических величин, формул.

Своими руками сделать подобную конструкцию можно. Но придется искать схемы возбуждающего генератора, совершать многочисленные эксперименты по взаимному расположению блоков в пространстве, подбирать частоты и резонансы.

Говорят, что кому-то удача улыбнулась. Но в открытом доступе найти полные данные, или заслуживающие доверия доказательства невозможно. Поэтому далее будут рассмотрены только реальные изделия, которые действительно можно сделать дома самому.

На следующем рисунке изображена принципиальная электрическая схема. Она собирается из недорогих стандартных деталей, которые можно приобрести в любом специализированном магазине. Их номиналы и обозначения указаны на чертеже. Затруднения могут возникнуть при поиске лампы, которая не выпускается в настоящее время серийно. Для замены можно использовать 6П369С. Но надо понимать, что этот вакуумный прибор рассчитан на меньшую мощность. Так как элементов немного, допустимо использование простейшего навесного монтажа, без изготовления специальной платы.

Электрическая схема генератора

Обозначенный на рисунке трансформатор – это катушка Тесла. Ее наматывают на трубке из диэлектрика, руководствуясь данными из следующей таблицы.

Количество витков в зависимости от обмотки и диаметра проводника

Свободные провода высоковольтной катушки устанавливают вертикально.

Чтобы обеспечить эстетичность конструкции, можно сделать своими руками специальный корпус. Он же пригодится для надежной фиксации блока на ровной поверхности и последующих экспериментов.

Один из вариантов конструкции генератора

После включения аппарата в сеть, если все сделано правильно, а элементы исправны, можно будет любоваться коронарным свечением.

Приведенную в предыдущем разделе схему из трех катушек, можно использовать совместно с этим устройством для опытов с целью создания личного источника бесплатной электроэнергии.

Коронарное излучение над катушкой

Если предпочтительна работа с новыми комплектующими деталями, стоит рассмотреть следующую схему:

Схема генератора на полевом транзисторе

Основные параметры элементов приведены на чертеже. Пояснения к сборке и важные дополнения указаны в следующей таблице.

Пояснения и дополнения к сборке генератора на полевом транзисторе

Деталь Основные параметры Примечания
Полевой транзистор Можно использовать не только тот, который отмечен на схеме, но и другой аналог, работающий с токами от 2,5-3 А и напряжением более 450 V. Перед монтажными операциями необходимо проверить функциональное состояние транзистора и других деталей.
Дроссели L3, L4, L5 Допустимо применение стандартных деталей из блока строчной развертки телевизора. Рекомендуемая мощность – 38 Вт
Диод VD 1 Возможно использование аналога. Номинальный ток прибора от 5 до 10 А
Катушка Тесла (Первичная обмотка) Создается из 5-6 витков толстого провода. Его прочность позволяет не использовать дополнительный каркас. Толщина проводника из меди – от 2 до 3 мм.
Катушка Тесла (Вторичная обмотка) Состоит из 900-1100 витков на трубчатой основе из диэлектрического материала с диаметром от 25 до 35 мм. Эта обмотка высоковольтная, поэтому пригодится ее дополнительная пропитка лаком, или создание защитного слоя фторопластовой пленкой. Для создания обмотки используют медный провод 0,3 мм в диаметре.

Скептики, отрицающие саму возможность использования «дармовой» энергии, а также те люди, которые не имеют элементарных навыков для работы с электротехникой, могут сделать своими руками следующую установку:

Безграничный источник бесплатной энергии

Пусть читателя не смущает отсутствие множества деталей, формул и объяснений. Все гениальное – просто, не правда ли? Здесь изображена принципиальная схема одного изобретения Тесла, которое до наших дней дошло без искажений, исправлений. Эта установка вырабатывает ток из солнечного света без специальных батарей и преобразователей.

Дело в том, что в потоке излучения ближайшей к Земле звезды есть частицы с положительными зарядами. При ударах о поверхность металлической пластины происходит процесс накопления заряда в электролитическом конденсаторе, который «минусом» подключен к стандартному заземлителю. Для увеличения эффективности приемник энергии устанавливают как можно выше. Подойдет алюминиевая фольга для запекания еды в духовке. Своими руками с использованием подручных средств можно сделать основу для ее закрепления и поднять устройство на большую высоту.

Но не стоит спешить в магазин. Производительность такой системы минимальна (ниже таблица с информацией по устройству).

Точные данные эксперимента

В солнечный день после 10 часов измерительный прибор показал 8 вольт на клеммах конденсатора. За несколько секунд в таком режиме разряд полностью был израсходован.

Очевидные выводы и важные дополнения

Несмотря на то что простое решение пока не предъявлено общественности, нельзя утверждать, что электромагнитный генератор великого изобретателя Тесла не существует. Теорию эфира не признает современная наука. Нынешние системы экономики, производства, политики будут уничтожены бесплатными или очень дешевыми источниками энергии. Разумеется, есть много противников их появления.

В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.

Катушка Тесла - это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

Высоковольтный трансформатор используется для зарядки конденсатора.

Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

Этапы строительства

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Вот основные шаги, с которых следует начать:

  1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
  2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
  3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
  4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
  5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
  6. Соедините все компоненты, настройте катушку, и все готово!

Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь - пока.

Детали

Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

Вторичная обмотка


Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1

При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

Металлическая сфера или тороид

Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

Первичная обмотка

Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С - емкость конденсаторов, F-резонансная частота вторичной обмотки.

Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

Конденсаторы


Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)

Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

Разрядник

Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

Трансформатор Тесла (принцип работы аппарата рассмотрим далее) был запатентован в 1896-м году, 22 сентября. Аппарат представили как прибор, производящий электрические токи высокого потенциала и частоты. Устройство было изобретено Николой Тесла и названо его именем. Рассмотрим далее этот аппарат подробнее.

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Описание

Простой трансформатор Тесла включает в себя две катушки. Одна - первичная, другая - вторичная. Также Тесла состоит из тороида (применяется не всегда), конденсатора, разрядника. Последний - прерыватель - встречается в английском варианте Spark Gap. Трансформатор Тесла также содержит "выход" - терминал.

Катушки

Первичная содержит, как правило, провод большого диаметра либо медную трубку с несколькими витками. Во вторичной катушке имеется кабель меньшего сечения. Его витков - около 1000. Первичная катушка может иметь плоскую (горизонтальную), коническую или цилиндрическую (вертикальную) форму. Здесь, в отличие от обычной трансформатора, нет ферромагнитного сердечника. За счет этого существенно снижается взаимоиндукция между катушками. Вместе с конденсатором первичный элемент формирует колебательный контур. В него включен разрядник - нелинейный элемент.

Вторичная катушка тоже формирует колебательный контур. В качестве конденсатора выступают тороидная и собственная катушечная (межвитковая) емкости. Вторичная обмотка часто покрыта слоем лака либо эпоксидной смолы. Это делается во избежание электрического пробоя.

Разрядник

Схема трансформатора Тесла включает в себя два массивных электрода. Эти элементы должны обладать устойчивостью к протеканию сквозь больших токов. Обязательно наличие регулируемого зазора и хорошего охлаждения.

Терминал

В резонансный трансформатор Тесла этот элемент может быть инсталлирован в разном исполнении. Терминал может представлять собой сферу, заточенный штырь или диск. Он предназначается для получения искровых предсказуемых разрядов с большой длиной. Таким образом, два связанных колебательных контура образуют трансформатор Тесла.

Энергия из эфира - одна из целей функционирования аппарата. Изобретатель прибора стремился достичь волнового числа Z в 377 Ом. Он изготавливал катушки все большего размера. Нормальная (полноценная) работа трансформатора Тесла обеспечивается в случае, когда оба контура настроены на одну частоту. Как правило, в процессе корректировки осуществляется подстройка первичного под вторичный. Это достигается за счет изменения емкости конденсатора. Также меняется количество витков у первичной обмотки до появления на выходе максимального напряжения.

В будущем предполагается создать несложный трансформатор Тесла. Энергия из эфира будет работать на человечество в полной мере.

Действие

Трансформатор Тесла функционирует в импульсном режиме. Первая фаза - конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая - генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику.

Заряд

Его производит внешний источник на основе низкочастотного повышающего трансформатора. Конденсаторная емкость выбирается так, чтобы она составляла вместе с индуктором определенный контур. Частота его резонанса должна быть равна высоковольтному контуру.

На практике все несколько иначе. Когда осуществляется расчет трансформатора Теслы, не учитывается энергия, которая пойдет на накачку второго контура. Напряжение заряда ограничивается напряжением у пробоя разрядника. Его (если элемент воздушный) можно регулировать. Напряжение пробоя корректируется при изменении формы либо расстояния между электродами. Как правило, показатель находится в пределах 2-20 кВ. Знак напряжения не должен слишком "закорачивать" конденсатор, на котором происходит постоянная смена знака.

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

Модификации

Какого бы типа ни была схема трансформатора Тесла, вторичный и первичный контуры остаются неизменными. Тем не менее один из компонентов основного элемента может быть разной конструкции. В частности, речь идет о колебаний. Например, в модификации SGTC этот элемент выполняется на искровом промежутке.

RSG

Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания.

В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов.

Ламповая катушка

В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока.

Как сделать трансформатор Тесла?

Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На "горячем" конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина Для генератора можно использовать транзистор КТ805ИМ.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Эффекты

Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные - зеленым.

Стримеры

Это тускло светящиеся разветвленные тонкие каналы. Они содержат ионизированные газовые атомы и свободные электроны, отщепленные от них. Эти разряды протекают от терминала катушки или от самых острых частей непосредственно в воздух. По своей сути стример можно считать видимой ионизацией воздуха (свечением ионов), которая создается ВВ-полем у трансформатора.

Дуговой разряд

Он образуется достаточно часто. К примеру, если у трансформатора достаточная мощность, при поднесении к терминалу заземленного предмета может образоваться дуга. В некоторых случаях требуется прикосновение предмета к выходу, а затем отведение на все большее расстояние и растягивание дуги. При недостаточной надежности и мощности катушки такой разряд может повредить компоненты.

Спарк

Этот искровой заряд отходит с острых частей или с терминала напрямую в землю (заземленный предмет). Спарк представлен в виде быстро сменяющихся или исчезающих ярких нитевидных полосок, разветвленных сильно и часто. Существует также особый тип искрового разряда. Он называется скользящим.

Коронный разряд

Это свечение ионов, содержащихся в воздухе. Оно происходит в высоконапряженном электрическом поле. В результате создается голубоватое, приятное для глаза свечение около ВВ-компонентов конструкции со значительной кривизной поверхности.

Особенности

В процессе функционирования трансформатора можно услышать характерный электрический треск. Это явление обусловлено процессом, в ходе которого стримеры превращаются в искровые каналы. Он сопровождается резким увеличением количества энергии и Происходит быстрое расширение каждого канала и скачкообразное повышение давления в них. В итоге на границах образуются ударные волны. Их совокупность от расширяющихся каналов формирует звук, который воспринимается как треск.

Воздействие на человека

Как и другой источник такого высокого напряжения, катушка Тесла может быть смертельно опасной. Но существует иное мнение, касающееся некоторых типов аппарата. Поскольку у высокочастотного высокого напряжения есть скин-эффект, а ток существенно отстает от напряжения по фазе и сила тока очень мала, несмотря на потенциал, разряд в человеческое тело не может спровоцировать ни остановку сердца, ни прочие серьезные нарушения в организме.

Трансформатор Тесла на качере Бровина своими руками и съем энергии.

Радиантная энергия. Беспроводная передача энергии.

Энергия эфира.

Из чего состоит вселенная? Вакуум, то есть пустота, или эфир - нечто из которого состоит все сущее? В подтверждение теории эфира Интернет предложил личность и исследования физика Николы Тесла и естественно его трансформатор,представленный классической наукой, как некое высоковольтное устройство по созданию спец-эффектов в виде электрических разрядов.

Особых пожеланий, предпочтений по длине и диаметру катушек трансформатора Тесла не нашел. Вторичная обмотка была намотана проводом 0,1мм на трубе пвх диаметром 50мм. Так сложилось что длина намотки составила 96 мм. Намотка велась против часовой стрелки. Первичная обмотка - медная трубка от холодильных установок диаметром 5 мм.

Запустить собранный коллайдер, можно простым способом. В интернет предлагаются схемы на резисторе, одном транзисторе и двух конденсаторах - качер Бровина по схеме Михаила (на форумах под ником МАГ). Трансформатор тесла после установки направления витков первичной обмотки так, как и на вторичной заработал, о чем свидетельствуют - небольшой объект похожий на плазму на конце свободного провода катушки, лампы дневного света на расстоянии горят, электричество, вряд ли это электричество в обычном понимании, по одному проводу в лампы поступает. Во всем металлическом находящемуся рядом с катушкой присутствует электростатическая энергия. В лампах накаливания - очень слабое свечение синего цвета.

Если цель сборки трансформатора тесла - получение хороших разрядов, то данная конструкция, на основе качера Бровина, для этих целей абсолютно не пригодна. То же самое мугу сказать об аналогичной катушке длинной 280 мм.

Возможность получения обычного электричества. Замеры осциллографом показали частоту колебаний на катушке съема порядка 500 кГц. Поэтому в качестве выпрямителя был использован диодный мост из полупроводников используемых в импульсных источниках питания. В начальной версии - автомобильные диоды шоттки 10SQ45 JF, затем быстрые диоды HER 307 BL.

Ток потребления всего трансформатора без подключения диодного моста 100 ма. При включении диодного моста в соответствии со схемой 600 ма. Радиатор с транзистором КТ805Б теплый, катушка съема, слегка греется. Для катушки съема использована медная лента. Можно использовать любой провод 3-4 витка.
Ток съема при включенном двигателе и только что заряженнном аккумуляторе порядка 400 ма, Если подключить двигатель на прямую к аккумулятору, ток потребления двигателя ниже. Измерения проводились стрелочным амперметорм советского производства, поэтому на особую точность не претендуют. При включенной тесле абсолютно везде (!) присутствует "горячая" на ощупь энергия.

Конденсатор 10000мF 25V без нагрузки заряжается до 40V, старт двигателя происходит легко. После запуска двигателя падение напряжения, двигатель работает на 11.6V.

Напряжение меняется при перемещении катушки съема вдоль основного каркаса. Минимальное напряжение при размещении катушки съема в верхней части и соответственно максимальное в нижней его части. Для данной конструкции максимальное значение напряжения удавалось получить порядка 15-16V.

Максимального съема по напряжению с использованием диодов шоттки можно добиться располагая витки катушки съема вдоль вторичной обмотки трансформатора Теслы, максимального съема по току - спираль в один виток перпендикулярно вторичной обмотки трансформатора Теслы.

Разница, в использовании диодов шоттки и быстрых диодов значительна. При использовании диодов шоттки, ток примерно раза в два выше.

Любые усилия по съему или работа в поле трансформатора тесла уменьшают напряженность поля, уменьшается заряд. Плазма выступает в роле индикатора наличия и силы поля.

На фотографиях объект, похожий на плазму, отображается лишь частично. Предположительно, для нашего глаза смена 50 кадров в секунду не различима. Тоесть набор постоянно сменяющихся объектов составляющих "плазму" воспринимается нами как один разряд. На боолее качественной аппаратуре съемка не проводилась.
Аккумулятор, после взаимодействия с токами теслы стремительно приходит в негодность. Зарядное устройство дает полную зарядку, но емкость аккумулятора падает.

Парадоксы и возможности.

При подключении электролитического конденсатора 47 мкф 400 вольт к аккумулятору или любому источнику постоянного напряжения 12В заряд конденсатора не привысит значение источника питания. Подключаю конденсатор 47 мкф 400 вольт к постоянному напряжению порядка 12В, полученного диодным мостом с катушки съема качера. Через пару-тройку секунд подключаю автомобильную лампочку 12В/21ВТ. Лампочка ярко вспыхивает и сгорает. Конденсатор оказался заряжен до напряжения более 400 вольт.

На осциллографе виден процесс зарядки электролитического конденсатора 10000 мкф, 25V. При постоянном напряжении на диодном мосте порядка 12-13 вольт, конденсатор заряжается до 40-50 вольт. При том же входном, переменном напряжении, конденсатор в 47 мкф 400V, заряжается до четырехсот вольт.

Электронное устройство съема дополнительной энернии с конденсатора должно работать по принципу сливного бочка. Ждем зарядки конденсатора до определенного значения либо по таймеру разряжаем конденсатор на внешнюю нагрузку (сливаем накопившуюся энергию). Разряд конденсатора соответствующей емкости даст хороший ток. Таким образом можно получить стандартное электричество.

Съем энергии.

При сборке трансформатора Тесла установлено, что статическое электричество, получаемое с катушки тесла, способно заряжать конденсаторы до значений, превышающих их номинал. Целью эксперимента является попытка выяснить заряд каких конденсаторов, до каких значений и при каких условиях возможен максимально быстро.

Скорость и возможность заряда конденсаторов до предельных значений определеят выбор выпрямителя тока. Проверены следующие выпрямители, показанные на фотографии (слева на право по эффективности работы в данной схеме) - кенотроны 6Д22С, демпферные диоды КЦ109А, КЦ108А, диоды шоттки 10SQ045JF и прочие. Кенотроны 6Д22С рассчитаны на напряжения 6,3В их необходимо включать от двух дополнительных аккумуляторов по 6,3В либо от понижающего трансформатора с двумя обмотками на в 6,3В. При последовательном подключении ламп к аккумулятору 12В, кенотроны работают не равнозначно, отрицательное значение выпрямленного тока необходимо соединить с минусом аккумуляторной батареи. Прочие диоды, в том числе и "быстрые" - малоэффективны, поскольку имеют незначительные обратные токи.

В качестве разрядника использована свеча зажигания от автомобиля, зазор 1-1,5мм. Цикл работы устройства следующий. Конденсатор заряжается до значений напряжения достаточного для возникновения пробоя через искровой промежуток разрядника. Возникает ток высокого напряжения способный зажечь лампочку накаливания 220В 60ВТ.

Ферриты используются для усиления магнитного поля первичной катушки - L1 и вставляются внутрь трубки ПВХ на которой намотан трансформатор тесла. Следует обратить внимание, что ферритовые наполнители должны находиться под катушкой L1 (медная трубка 5 мм) и не перекрывать весь объем трансформатора тесла. В противном случае генерация поля трансформатором Тесла срывается.

Если не использовать ферриты с конденсатором 0,01 мкф лампа зажигается с частотой прядка 5 герц. При добавлении ферритового сердечника (кольца 45мм 200НН) искра стабильна, лампа горит с яркостью до 10 процентов от возможной. При увеличении зазора свечи, происходит высоковольтный пробой между контактами электролампы к которым крепится вольфрамовая нить. Накал вольфрамовой нити не происходит.

При предлагаемых, емкости конденсатора более 0,01 мкф и зазоре свечи 1-1.2 мм, по цепи идет преимущественно стандартное (кулоновское) электричество. Если уменьшить емкость конденсатора, то разряд свечи будет состоять из электростатического электричества. Поле генерируемое трансформатором тесла в данной схеме, слабое, лампа светиться не будет. Краткое видео:

Вторичная катушка трансформатора тесла, представленая на фотографии, намотана проводом 0,1 миллиметра на трубке пвх с внешним диаметром 50 миллиметров. Длинна намотки 280 мм. Величина изолятора между первичной и вторичной обмотками 7 мм. Какого либо прироста мощности по сравнению с аналогичными катушками длинной намотки 160 и 200 мм. не отмечается.

Ток потребления устанавливается переменным резистором. Работа данной схемы стабильна при токе в пределах двух ампер. При токе потребления более трех ампер или меннее одного ампера, генератрация стоячей волны трансформатором Тесла срывается.

При увеличении тока потребления с двух до трех ампер, мощность отдаваемая в нагрузку увеличивается на пятьдесят процентов, поле стоячей волны усиливается,лампа начинает гореть ярче. Следует отметить только 10 процентное увеличения яркости свечения лампы. Дальнейшее увеличение тока потребления перерывает генерацию стоячей волны либо сгорает транзистор.

Начальный заряд аккумулятора составляет 13,8 вольта. В процессе работы данной схемы, аккумулятор заряжается до 14.6-14.8V. При этом емкость аккумулятора падает. Общая продолжительность аккумулятора под нагрузкой составляет четыре-пять часов. В итоге аккумулятор разряжается до 7 вольт.

Парадоксы и возможности.

Результат работы данной схемы - стабильный высоковольтный искровой разряд. Представляется возможным запуск классического варианта трансформатора Тесла с генератором колебаний на искровом промежутке (разряднике) SGTC (Spark Gap Tesla Coil) Теоретически: это замена в схеме лампы накаливания на первичную катушку трансформатора Тесла. Практически: при установке в цепь вместо электролампы трансформатора Тесла такого же как на фотографии идет пробой между первичной и вторичной обмотками. Высоковольтные разряды до трех саниметров. Требуется подобрать расстояние между первичной и вторичной обмотками, величину искрового промежутка, емкость и сопротивление цепи.

Если использовать сгоревшую электрическую лампу, то между проводниками к которым крепится вольфрамовая нить, возникает устойчивая высоковольтная электрическая дуга. Если напряжение разряда свечи зажигания можно оценить примерно в 3 киловольта, то дугу лампы накаливания можно оценить в 20 киловольт. Так как лампа имеет емкость. Данная схема может быть использована как умножитель напряжения на основе разрядника.

Техника безопасности.

Какие либо действия со схемой необходимо проводить только после отключения трансформатора тесла от источника питания и обязательной разрядки всех конденсаторов, находящихся вблизи трансформатора Тесла.

При работе с данной схемой настоятельно рекомендую использовать разрядник, постоянно подключенный параллельно конденсатору. Он выполняет роль предохранителя от перенапряжений на обкладках конденсатора, способных привести его к пробою либо взрыву.

Разрядник не даёт зарядиться конденсаторам до максимальных значений по напряжению, поэтому разряд высоковольтного конденсаторов менее 0,1 мкф при наличии разрядника на человека опасен, но не смертелен. Величину искрового промежутка руками не регулировать.

Пайкой в поле качера электронных компонентов не заниматься.

Радиантная энергия. Никола Тесла.

В настоящее время подменяются понятия и радиантной энергии дается иное определение, отличное от свойств описанных Николой Тесла. В наши дни радиантная энергия это - энергия открытых систем таких как энергия солнца, вода, геофизические явления которые могут использованы человеком.

Если вернутся к первоисточнику. Одно из свойств радиантного тока демонстрировалось Николой Тесла на устройстве - повышающий трансформатор, конденсатор, разрядник подключенный к медной U-образной шине. На короткозамкнутой шине размещены лампы накаливания. По классическим представлениям, лампы накаливания гореть не должны. Электрический ток должен идти по линии с наименьшим сопротивлением, тоесть по меденой шине.

Для воспроизведения эксперимента был собран стенд. Повышающий трансорматор 220В-10000В 50ГЦ типа ТГ1020К-У2. Во всех патентах Н.Тесла рекомендует в качестве источника питания использовать положительное (однополярное), пульсирующее напряжение. На выходе высоковольтного трансформатора установлен диод, сглаживающий отрицательные пульсации напряжения. На этапе начала заряда конденсатора ток, идущий через диод, сопоставим с коротким замыканием, поэтому для предотвращения выхода из строя диода последовательно включен резистор 50К. Конденсаторы 0.01мкф 16КВ, включены последовательно.

На фотографии, вместо медной шины, представлен соленоид намотанный медной трубкой диаметром 5мм. К пятому витку соленоида подключен контакт лампочки накаливания 12В 21/5ВТ. Пятый виток соленоида (желтый провод), выбран экспериментально, чтобы лампа накаливания не перегорела.

Можно допустить, факт наличия соленоида, вводит в заблуждение многих исследователей пытающихся повторить устройства Дональда Смита (американский изобретатель СЕ устройств) Для полной аналогии с классическим вариантом, предложенным Н.Теслой, соленоид был развернут в медную шину, лампа накаливания горит с такой же яркостью и перегорает при перемещении ближе к концам медной шины. Таким образом, математические выкладки, которыми пользуется американский исследователь слишком упрощены и не описывают процессы происходящие в соленоиде. Расстояние искрового промежутка разрядника не значительно влияет на яркость свечения электролампы, но влияет на рост потенциала. Между контактами электролампы, на которых закреплена вольфрамовая нить, происходит высоковольтный пробой.

Логичным продолжением соленоида в качестве первичной обмотки является и классический вариант трансформатора Н.Тесла.

Что за ток и каковы его характеристики на участке между разрядником и обкладкой конденсатора. То есть в медной шине в схеме предлагаемой Н.Тесла.

Если длина шины порядка 20-30 см., то электрическая лампа, закрепленная на концах медной шины не горит. Если размер шины увеличить до полутора метров лампочка начинает гореть, вольфрамовая нить раскаляется и светится привычным ярко-белым светом. На спирале лампы (между витками вольфрамовой нити) присутствует голубоватое пламя. При значительных "токах", обусловленных увеличением длины медной шины температура увеличивается, лампа темнеет, вольфрамовая нить точечно выгорает. Ток электронов в цепи прекращается, на участке выгорания вольфрама появляется энергетическая субстанция холодного, голубого цвета:

В эксперименте использовался повышающий трансформатор - 10КВ, с учетом диода максимальное напряжение составит 14КВ. По логике - максимальный потенциал всей схемы должен быть не выше этого значения. Так и есть, но только в разряднике, где возникает искра порядка полутора сантиметров. Слабый высоковольтный пробой на участках медной шины в два и более сантиметров говорит о наличии потенциала более 14 КВ. Максимальный потенциал в схеме Н.Тесла у лампочки, которая ближе к разряднику.

Конденсатор начинает заряжаться. На разряднике идет рост потенциала, возникает пробой. Искра обуславливает появление электродвижущей силы определенной мощности. Мощность это произведение тока на напряжение. 12 вольт 10 ампер (толстый провод) то же, что и 1200 вольт 0,1 ампер (тонкий провод). Разница состоит в том, что для передачи большего потенциала требуется меньшее число электронов. Для придачи значительному числу "медленных" электронов в медной шине ускорения (больший ток) требуется время. На данном участке цепи происходит перераспределение - возникает продольная волна увеличения потенциала при незначительным росте тока. На двух различных участках медной шины образуется разность потенциалов. Эта разность потенциалов и обуславливает свечение лампы накаливания.На медной шине наблюдается скин эффект (движение электронов по поверхности проводника) и значительный потенциал, больший чем заряд конденсатора.

Электрический ток обусловлен наличием в кристаллических решётках металлов подвижных электронов, перемещающихся под действием электрического поля. В вольфраме, из которого сделана нить лампы накаливания, свободные электроны менее подвижны чем в сербре, меди или алюминии. Поэтому движение поверхностного слоя электрнов фольфрамовой нити вызывает свечение лампы накаливания. Вольфрамовая нить лампы накаливания разорвана, потенциальный барьер выхода из металла электроны преодолевают, возникает электронаая эмиссия. Электронны находятся в области разрыва вольфрамовой нити. Энергетическая субстанция голубого цвета следствие и одновременно причина поддержание тока в цепи.

Говорить о полном соответствии полученного тока с радиантным током, описанным Н.Тесла преждевременно. Н.Тесла указывает, что подключенные к медной шине электролампы не нагревались. В прооведенном эксперементе электрические лампы нагреваются. Это говорит о движении электрнов вольфрмаовой нити. В эксперементе следует добиться полного отсутствия электрического тока в цепи: Продольная волна роста потенцила широкого частотного спектра искры без токовой составляющей.

Заряд конденсаторов.

На фотографии показана возможность заряда высоковольтных конденсаторов. Заряд осуществляется с помощью электростатического электричесвтва трансформатора Тесла. Схема и принципы съема описаны в разделе съем энергии.

Ролик демонстрирующий заряд конденсатора 4Мкф можно посмотреть по ссылке:

Разрядник, четыре конденсатора КВИ-3 10КВ 2200ПФ и два конденсатора емкостью 50МКФ 1000В. включены последовательно. В разряднике идет постоянный искровой разряд сатистического электричества. Разярядник собран из клемм магнитного пускателя и имеет более высокое сопротивление, чем медная проволока. Величина искрового промежутка разрядника - 0,8-0,9мм. Величина промежутка между контактами разрядника на основе медной проволоки, подключенной к конденсаторам 0,1 и менее мм. Искровой разряд статического электричества между контактами медной проволоки отсутствует, хотя искровой промежуток меньше, чем в основном разряднике.

Конденсаторы заряжаются до напряжений более 1000В, оценить величину напряжения нет технической возможности. Следует отметить, при неполном заряде конденсатора, например до 200В, тестер показывает колебания напряжения от 150В до 200В и более вольт.

При накоплении заряда конденсаторы заряжаются до напряжений более 1000В, происходит пробой промежутка устанавливаемого медной проволокой подключенной к клемам конденсатора. Пробой сопровождается вспышкой и громким взрывом.

При включении схемы, сразу на клемах конденсатора появляется и начинает рости высокое напряжение и далее идет заряд конденсатора. То что конденсатор заряжен можно определить по уменьшению и последующему прекращению электростатической искры в разряднике.

Если убрать дополнительный разрядник из медной проволоки, подключенной к высоковольтным конденсаторам, вспышки происходят в основном разряднике.

Конденсатор используемый в ролике, МБГЧ-1 4 мкф * 500В через 10 минут непрерывной работы - вздулся и вышел из строя, чему предшествовало бульканье масла.

При работе схемы на всех участках присутствует электростатическое электричество, о чем свидетельствует свечение неоновой лампочки.

Если заряжать конденсаторы высокой емкости без разрядника, при разряде конденсаторов выходят из строя выпрямительные диоды.

Беспроводная передача энергии.

Оба соленоида намотаны на трубе пвх с внешним диаметром 50 мм. Горизонтальный солионоид (передатчик) намотан проводом 0,18 мм, длина 200 мм., расчетная длина провода 174,53м. Вертикальный соленоид (приемник) намотан проводом 0,1 мм., длина 280 мм, расчетная длина провода 439,82м.

Ток потребления схемы менее одного ампера. Электролампа 12 вольт 21 ватт. Яркость свечения лампы составляет около 30% в сравнении с непосредственным подключением к аккумулятору.

На увеличение яркости свечения лампы, помимо перпендикулярного размещения соленоидов, влияет взаимное расположение проводников - конец соленоида передатчика (красная изолента) и начало солиноида приемника (черная изолента). При близком, парралельном их размещении яркость свечения лампы увеличивается.

Заряд конденсаторов в ранее рассмотренной схеме возможен через катушку посредник без непосредственной связи блока съема (высоковольтный конденсатор и выпрямительные диоды) с трансформатором тесла. Эффективность беспроводной передачи энергии порядка 80-90% в сравнении с непосредственным подключением блока съема к соленоиду-передатчику. На фотографии показано наиболее эффективное расположение соленоидов друг относительно друга. Поскольку расположение соленоидов перпендикулярно, передача энергии посредством магнитного поля по классическим представлениям невозможна. Визуально оценить энергетику процесса возможно просмотрев фильм:

Верхний конец соленоида-приемника соеденен с выпрямителями КЦ109А, нижний не соеденен ни с чем. При работающей схеме в нижней части соленоида-приемника наблюдается незначительная искра. Верхний конец соленоида-передатчика в воздухе, не соеденен ни с чем.
Ток потребления 1А. В качестве катушки посредника проверялись соленоиды намотанные проводом 0,1мм, длина 200 и 160 мм. Конденсатор до напряжения необходимого для пробоя разрядника не заряжается. Соленоид-приемник представленный на фотографии дает наилучший результат. Ферритовые наполнители в передатчике и приемнике не использовались.

С уважением, А. Мищук.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Loading...Loading...