Цикл Кребса: что это такое простым языком. Цикл Кребса – центральный путь обмена веществ Как ускорить цикл кребса в организме

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов . В дальнейшем было показано, что цикл трикарбо-новых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул , играющих роль «клеточного топлива »: углеводов , жирных кислот и аминокислот .

Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса . Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата ). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода ) и двух декарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса .

Рис. 10.9. Цикл трикарбоновых кислот (цикл Кребса ).

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота :

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты , которая, присоединяя молекулу воды , переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата :

Третья реакция , по-видимому, лимитирует скорость цикла Кребса . Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом , которому в качестве специфического активатора необходим АДФ . Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

Во время четвертой реакции происходит окислительное декарбокси-лирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА, α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов : ТПФ, амид липоевой кислоты , HS-KoA, ФАД и НАД + .

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат ). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту . Окисление сукцината катализируется сукцинатдегидрогеназой , в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной :

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы ). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота :

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций , происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи цепи дыхательных ферментов ), локализованной в мембране митохондрий . Образовавшийся ФАДН 2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ . Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов ; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного ), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН 2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ . В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование ), что равносильно одной молекуле АТФ . Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ .

Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО 2 и Н 2 О, то он окажется значительно большим.

Как отмечалось, одна молекула НАДН (3 молекулы АТФ ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО 2 и Н 2 О дает 15 молекул АТФ ). К этому количеству надо добавить 2 молекулы АТФ , образующиеся при аэробном гликолизе , и 6 молекул АТФ , синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза . Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С 6 Н 12 О 6 + 6О 2 -> 6СО 2 + 6Н 2 О синтезируется 38 молекул АТФ . Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз .

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ , а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий . Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.

руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:

Дигидроксиацетонфосфат + НАДН + Н + <=> Глицерол-3-фосфат + НАД + .

Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану . Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент ) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:

Глицерол-3-фосфат + ФАД <=> Диоксиацетонфосфат + ФАДН 2 .

Восстановленный флавопротеин (фермент-ФАДН 2) вводит на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования , а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН + Н +), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ .

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.

В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии .

В клетках печени , почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях .

Установлено, что от цитозольного НАДН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы (рис. 10.11) переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты , проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД + восстанавливается в НАДН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов , локализованную на внутренней мембране митохондрии . В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента АсАТ вступает в реакцию трансаминирования . Образующиеся аспарат и α-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий .

Транспортирование в цитозоле регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции , происходит без потребления энергии, «движущей силой» его является постоянное восстановление НАД + в цитозоле гли-церальдегид-3-фосфатом, образующимся при катаболизме глюкозы .

Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

В табл. 10.1 приведены реакции , в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы , с указанием эффективности процесса в аэробных и анаэробных условиях

Министерство образования Российской федерации

Самарский Государственный технический университет

Кафедра «Органической химии»

Реферат на тему:

«ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)»

Выполнил студент: III – НТФ – 11

Ерошкина Н.В.

Проверил.

Цикл лимонной кислоты (цикл Кребса)

Биоорганические вещества, такие, как глюкоза, обладают большим запасом энергии. При окислении глюкозы кислородом

высвобождается энергия Гиббса AG = -2880 кДж/моль. Эта энергия может запасаться в клетке в форме химической энергии фосфатных связей аденозилтрифос- фата АТР. Образующиеся молекулы АТР диффундируют в различные участки клетки, где используется энергия. АТР - это переносчик энергии. Клетка использует эту энергию для выполнения работы. Однако при гликолизе тратится лишь незначительная часть энергии, запасенной в глюкозе (несколько процентов). Основная ее часть передается в цикле Кребса (рис. 9.4), сопряженном с клеточным дыханием.


Рис. 9.4.

I - оксалоацетат, ацетил*СоЛ, 2 - лимонная кислота (цитрат). 3 - иэоцитрат. 4 - оксалосукцинат. 5 - кетоглугарат. 6 - янтарная кислота (сукцинат). 7 - фумарат. 8 - яблочная кислота (малат)

Цикл Кребса, или цикл лимонной кислоты, или цикл 3-карбоновых кислот, представляет собой ряд последовательных реакций, протекающих в митохондриях. В ходе этих реакций осуществляется катаболизм ацетильных групп СН3СО-, передаваемых от пирувата, конечного продукта гликолиза. Пируват вступает в реакции цикла Кребса, предварительно превращаясь в ацетил-СоА.

Цикл Кребса, как и гликолиз, представляет собой метаболический путь, состоящий из последовательных стадий - реакций. В отличие от гликолиза, этот путь замкнутый, циклический.

1. Ацетил-СоА - продукт катаболизма углеводов, белков и липидов - вступает в цикл, реагируя (конденсируется) с солью щавелевоуксусной кислоты (оксало- ацстатом). При этом образуется соль лимонной кислоты (цитрат):

2. Цитрат изомеризуется в изоцитрат. Реакция катализируется ферментом ако- нитазой и проходит через образование аконитата с последующим его превращением в изоцитрат:

3. Изоцитрат окисляется до а-кетоглутарата. Реакция катализируется ферментом изоцитратдегидрогеназой:

4. а-Кетоглутарат подвергается окислительному декарбоксилированию с образованием сукцинил-СоА. Катализируеся а-кетоглутарат дегидрогеназой:

5. Сукцинил-СоА превращается в сукцинат. Реакция катализируется ферментом сукцинат-СоА-лигазой:

6. Сукцинат превращается в фумарат. Реакция катализируется ферментом дегидрогеназой:

7. Фумарат гидратируется по двойной связи с образованием малата (соль яблочной кислоты). Катализируется фумаратгидратазой:

8. Манат окисляется до оксапоацетата. Катализируется мапатдегидрогеназой:

Рис. 9.5.

На восьмой стадии цикл замыкается и начинается его новое прохождение.

Все стадии цикла лимонной кислоты протекают во внутренней среде митохондрий - матриксе (рис. 9.5). Здесь находятся все ферменты этого метаболического пути.

Митохондрия (от греч. «mitos» - нить и «chondrion» - зернышко) имеет вытянутую форму; длина 1,5-2 мкм, диаметр 0,5-1 мкм. Органеллы клеток животных находятся в жидкой среде клетки - цитоплазме (см. рис. 6.2).

Внутреннее пространство митохондрий окружено двумя непрерывными мембранами. При этом наружная мембрана гладкая, а внутренняя образует многочисленные складки, или кристы. Внутримитохондриальное пространство ограничено внутренней мембраной, заполнено жидкой средой - матриксом, который примерно на 50% состоит из белка и имеет очень тонкую структуру. Удлиненная форма митохондрий не универсальна. В некоторых тканях, например в поперечно-полосатых скелетных мышцах, митохондрии иногда принимают самые причудливые очертания.

В митохондриях сосредоточено большое количество ферментов.

В клетке может находиться от нескольких сотен до нескольких десятков тысяч митохондрий. Для одного и того же типа клеток число митохондрий более или менее постоянно. Однако следует помнить, что количество митохондрий может меняться в зависимости от стадии развития клетки и ее функциональной активности, а в целом от интенсивности нагрузок на организм.

Митохондрии - энергетические станции, вырабатывающие энергию для жизнедеятельности организма. Особенно много митохондрий в мышечных клетках, где требуются большие затраты энергии.

Образованные в цикле Кребса высокоэнергетические вещества NADH и FADFb (см. рис. 9.4) передают свою энергию в реакции ресинтеза АТР из ADP:

В результате на каждую молекулу NADH образуются 3 молекулы АТР. Эта реакция окислительно-восстановительная, т. е. сопровождается переносом электронов от восстановителя NADH к окислителям (см. разд. 4.3). В качестве окислителя выступает кислород О2. Эта реакция называется окислительным фосфорилированием ADP в АТР.

Окислительное фосфорилирование происходит во внутренней митохондриальной мембране. В трех участках дыхательной цепи запасается энергия в результате синтеза АТР из ADP и Р,.

Реакция протекает в несколько стадий на внутренних мембранах митохондрий (см. рис. 9.5), в системе ферментов, называемой дыхательной цепью. Сюда из клеточной плазмы поступают молекулы ADP. Соответствующий окислительновосстановительный процесс называется клеточным дыханием. Именно здесь расходуется кислород, которым мы дышим.

Молекулы АТР, образованные в матриксе, выходят из митохондрий в плазму клетки, где участвуют в различных биохимических реакциях, протекающих с расходом энергии.

Таким образом, энергия, высвобождающаяся в процессе переноса электронов от восстановителей, используется для окислительного фосфорилирования ADP в АТР.

Предполагают, что энергия, высвобождающаяся вдыхательной цепи, затрачивается непосредственно на перевод внутренней мембраны в новое, богатое энергией конформационное состояние, которое, в свою очередь, становится движущей силой окислительного фосфорилирования, приводящего к образованию АТР. В настоящее время наиболее серьёзное обоснование получила гипотеза хемоосмо- тического сопряжения Митчела.

Таким образом, биосинтез АТР в животном организме осуществляется из ADP и неорганического фосфата Р, при активировании последнего за счёт энергии окисления органических соединений при метаболических процессах.

Окисление органических соединений в живых системах не всегда сопряжено с фосфорилированием, и фосфорилирование не обязательно должно быть окислительным.

Известно несколько сотен реакций окисления. Не менее десятка из них сопряжено с одновременным активированием неорганического фосфата. Такие реакции называют реакциями субстратного фосфорилирования. Здесь реакции расщепления субстрата сопровождаются передачей энергии непосредственно неорганическому фосфату. В результате образуется другой фосфорилированный субстрат с макроэргической связью. В этом случае в процессе не участвует дыхательная цепь ферментов и не происходит превращение энергии, выделяемой при переносе электронов на кислород, в энергию фосфатной связи АТР.

В качестве примера субстратного фосфорилирования можно привести реакцию превращения сукницил-СоА в янтарную кислоту с образованием GTP из GDP и фосфата Р, в лимоннокислом цикле.

В растениях источником энергии для активирования неорганического фосфата и обеспечения синтеза АТР служит энергия солнечного света, улавливаемая фото- синтетическим аппаратом клетки. Такое фосфорилирование называют фотосин- тетическим.

Для удовлетворения потребностей человеческого организма в энергии молекулы АТР на протяжении суток тысячи и тысячи раз расщепляются до молекул ADP и Р, с последующим ресинтезом АТР. Кроме того, скорость ресинтеза АТР должна меняться в широких пределах - от минимальной во время сна до максимальной в периоды напряженной мышечной работы.

Из сказанного можно сделать вывод, что окислительное фосфорилирование не просто непрерывный жизненно важный процесс. Он должен регулироваться в широких пределах, что достигается путем тренировки.

Суммарное уравнение реакций гликолиза и цикла лимонной кислоты записывается следующим образом:

Стандартная энергия Гиббса окисления 1 моля глюкозы СбН^Об равна ДG* = = -2880 кДж (см. разд. 5.1). Стандартная энергия Гиббса гидролиза 38 молей АТР (запасенная энергия) равна ДG°" = -38*30 = -1180 кДж, т. е. запасается лишь 40% энергии глюкозы (коэффициент полезного действия дыхания). Остальная энергия выделяется из организма в виде тепла Q. Этим объясняется разогрев и повышение температу ры тела при интенсивной работе (см. рис. 5.2).

Глюкоза выполняет функцию клеточного топлива в нашем организме. Она получается главным образом либо в процессе пищеварения из углеводов, либо путем синтеза из резервных жиров.

В 30-х годах двадцатого века немецкий учёный Ганс Кребс вместе со своим учеником занимается изучением циркуляции мочевины. Во время Второй мировой войны, Кребс перебирается в Англию где и приходит к выводу, что некоторые кислоты катализируют процессы в нашем организме. За это открытие ему была вручена Нобелевская премия.

Как известно, энергетический потенциал организма зависит от глюкозы, которая содержится в нашей крови. Также, клетки человеческого организма содержат митохондрии, которые помогают в переработке глюкозы с целью её превращения в энергию. После некоторых преобразований глюкоза превращается в вещество под названием «аденозинтрифосфат» (АТФ) – главный источник энергии клеток. Его структура такова, что он может встраиваться в белок, и это соединение будет обеспечивать энергией все системы органов человека. Напрямую глюкоза не может стать АТФ, поэтому используются сложные механизмы для получения нужного результата. Им и является цикл Кребса.

Если говорить совсем уж простым языком, то цикл Кребса — это цепочка химических реакций, происходящих в каждой клетке нашего тела, которая называется циклом потому, что продолжается непрерывно. Конечным результатом данного цикла реакций является производство аденозинтрифосфата — вещества, которое представляет собой энергетическую основу жизнедеятельности организма. По-другому этот цикл называется клеточным дыханием, так как большинство его стадий происходят с участием кислорода. Кроме того, выделяют важнейшую функцию цикла Кребса – пластическую (строительную), так как во время цикла вырабатываются важные для жизнедеятельности элементы: углеводы, аминокислоты и т. д.

Для осуществления всего вышеизложенного необходимо наличие более ста различных элементов, в том числе витаминов. При отсутствии или недостатке хотя бы одного из них цикл будет недостаточно эффективным, что приведёт к нарушению метаболизма во всём теле человека.

Этапы цикла Кребса

  1. Первый этап заключается в расщеплении молекул глюкозы на две молекулы пировиноградной кислоты. Пировиноградная кислота выполняет важную метаболическую функцию, от её действия напрямую зависит работа печени. Доказано, что данное соединение содержится в некоторых фруктах, ягодах и даже в мёде; её успешно применяют в косметологии, как способ борьбы с отмершими клетками эпителия (гоммаж). Также, в результате реакции может образоваться лактат (молочная кислота), которая имеется в поперечнополосатой мускулатуре, крови (точнее в эритроцитах) и мозге человека. Важный элемент в работе сердца и нервной системы. Происходит реакция декарбоксилирования, то есть отщепление карбоксильной (кислотной) группы аминокислот, в процессе которой образуется кофермент А – он выполняет функцию транспортировки углерода в различных обменных процессах. При соединении с молекулой оксалоацетата (щавелевой кислоты) получается цитрат, который фигурирует в буферных обменах, т. е. «на себе» переносит полезные вещества в нашем организме и помогает им усваиваться. На данном этапе кофермент А полностью высвобождается, плюс, мы получаем молекулу воды. Данная реакция является необратимой.
  2. Вторая стадия характеризуется дегидрированием (отщеплением молекул воды) от цитрата, что дают нам цис-аконитат (аконитовая кислота), который помогает в образовании изоцитрата. По концентрации данного вещества, например, можно определить качество фруктов или фруктового сока.
  3. Третий этап. Здесь от изолимонной кислоты отделяется карбоксильная группа, что в результате даёт кетоглутаровую кислоту. Альфа-кетоглутарат участвует в улучшении всасывания аминокислот из поступающей пищи, улучшает метаболизм и предупреждает появление стрессов. Также образовывается NADH – вещество необходимое для нормального протекания окислительных и обменных процессов в клетках.
  4. На следующем этапе при отделении карбоксильной группы образуется сукцинил-КоА, который является важнейшим элементом в образовании анаболических веществ (белков и т.д.). Возникает процесс гидролиза (соединение с молекулой воды) и высвобождается энергия АТФ.
  5. На последующих стадия цикл начнёт замыкаться, т.е. сукцинат снова потеряет молекулу воды, что превращает его в фумарат (вещество способствующее переносу водорода к коферментам). К фумарату присоединяется вода и образуется малат (яблочная кислота), она окисляется, что снова приводит к появлению оксалоацетата. Оксалоацетата, в свою очередь, выступает в роли катализатора в вышеуказанных процессах, его концентрациях в митохондриях клеток постоянна, но, при этом, довольна низкая.

Таким образом можно выделить важнейшие функции данного цикла:

  • энергетическая;
  • анаболическая (синтез органических веществ – аминокислот, жирных белков и т.д.);
  • катаболическая: превращение некоторых веществ в катализаторы – элементы, способствующие выработке энергии;
  • транспортная, в основном происходит транспортировка водорода, участвующего в дыхании клеток.

Цикл Кребса также называется циклом трикарбоновых кислот , так как они образуются в нем в качестве промежуточных продуктов. Представляет собой ферментативный кольцевой конвейер, «работающий» в матриксе митохондрий.

Результатом цикла Кребса является синтез небольшого количества АТФ и образование НАД · H 2 , который далее направляется на следующий этап – дыхательную цепь (окислительное фосфорилирование), расположенную на внутренней мембране митохондрий.

Образовавшаяся в результате пировиноградная кислота (пируват) поступает в митохондрии, где она в конечном итоге полностью окисляется, превращаясь в углекислый газ и воду. Сначала это происходит в цикле Кребса, затем при окислительном фосфорилировании.

До цикла Кребса пируват декарбоксилируется и дегидрируется. В результате декарбоксилирования отщепляется молекула CO 2 , дегидрирование - это отщепление атомов водорода. Они соединяются с НАД.

В результате из пировиноградной кислоты образуется уксусная, которая присоединяется к коферменту А. Получается ацетилкофермент А (ацетил-КоА) – CH 3 CO~S-КоА, содержащий высокоэнергетическую связь.

Превращение пирувата в ацетил-КоА обеспечивает большой ферментативный комплекс, состоящий из десятков полипептидов, связанным с переносчиками электронов.

Цикл Кребса начинается с гидролиза ацетил-КоА, при котором отщепляется ацетильная группа, содержащая два атома углерода. Далее ацетильная группа включается в цикл трикарбоновых кислот.

Ацетильная группа присоединяется к щавелевоуксусной кислоте, имеющей четыре атома углерода. В результате образуется лимонная кислота, включающая шесть атомов углерода. Энергию для этой реакции поставляет макроэргическая связь ацетил-КоА.

Далее следует цепь реакций, в которых связанная в цикле Кребса ацетильная группа дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул CO 2 . При этом для окисления используется кислород, отщепляемый от двух молекул воды, а не молекулярный . Процесс называется окислительн ым декарбоксилирование м . В конце цикла щавелевоуксусная кислота регенерируется.

Вернемся на этап лимонной кислоты. Ее окисление проходит за ряд ферментативных реакций, при которых образуются изолимонная, щавелевоянтарная и другие кислоты. В результате этих реакций, на разных стадиях цикла, восстанавливаются три молекулы НАД и одна ФАД, образуется ГТФ (гуанозинтрифосфат), содержащий макроэргическую фосфатную связь, энергия которой впоследствии используется для фосфорилирования АДФ. В результате образуется молекула АТФ.

Лимонная кислота теряет два атома углерода с образованием двух молекул CO 2 .

В результате ферментативных реакций лимонная кислота превращается в щавелевоуксусную, которая снова может соединиться с ацетил-КоА. Цикл повторяется.

В составе лимонной кислоты присоединившийся остаток ацетил-КоА сгорает с образованием углекислого газа, атомов водорода и электронов. Водород и электроны переносятся на НАД и ФАД, которые являются акцепторами для него.

Окисление одной молекулы ацетил-КоА дает одну молекулу АТФ, четыре атома водорода и две молекулы углекислого газа. То есть углекислый газ, выделяемый при аэробном дыхании, образуется на этапе цикла Кребса . При этом молекулярный кислород (O 2) здесь не используется, он необходим лишь на этапе окислительного фосфорилирования.

Атомы водорода присоединяются к НАД или ФАД, в таком виде далее попадают в дыхательную цепь.

Одна молекула глюкозы дает две молекулы пирувата и, следовательно, два ацетил-КоА. Таким образом на одну молекулу глюкозы приходится два оборота цикла трикарбоновых кислот. В общей сложности образуются две молекулы АТФ, четыре CO 2 , восемь атомов H.

Следует отметить, что не только глюкоза и образующийся из нее пируват поступают в цикл Кребса. В результате расщепления ферментом липазой жиров образуются жирные кислоты, окисление которых также приводит к образованию ацетил-КоА, восстановлению НАД, а также ФАД (флавинадениндинуклеотида).

Если клетка испытывает дефицит углеводов и жиров, то окислению могут подвергаться аминокислоты. При этом образуются ацетил-КоА и органические кислоты, которые далее участвуют в цикле Кребса.

Таким образом неважно, каким был первичный источник энергии. В любом случае образуется ацетил-КоА, представляющий собой универсальное для клетки соединение.

Цикл Кребса? Что это такое?

Если вы не в курсе, то это — цикл трикарбоновых кислот. Понятнее?

Если нет, то это — ключевой этап дыхания всех клеток, использующих кислород. Кстати, за открытие этого цикла Ганс Кребс получил Нобелевскую премию.

Вообщем, как вы поняли, эта штука очень важная, особенно для биохимиков. Именно им интересен вопрос «Как быстро запомнить цикл Кребса? »

Вот как он выглядит:

По сути Цикл Кребса описывает этапы превращения лимонной кислоты. Их и нужно запомнить.

  1. Конденсация ацетил-коэнзима А со щавелевоуксусной кислотой приводит к образованию лимонной кислоты.
  2. Лимонная кислота превращается в изолимонную через цисаконитовую.
  3. Изолимонная кислота дегидрируется с образованием альфа-кетоглутаровой и углекислого газа.
  4. Альфа-кетоглутаровая кислота дегидрируется с образованием сукцинил-коэнзима А и углекислого газа.
  5. Сукцинил-коэнзим А превращается в янтарную кислоту.
  6. Янтарная кислота дегидрируется с образованием фумаровой.
  7. Фумаровая кислота гидратируется с образованием яблочной.
  8. Яблочная кислота дегидрируется с образованием щавелевоуксусной. При этом цикл замыкается. В первую реакцию следующего цикла вступает новая молекула ацетил-коэнзима А.

Я, на самом деле, не всё понял. Мне больше интересно про то, а как это запомнить.

Как запомнить Цикл Кребса? Стих!

Есть замечательный стих, который позволяет запомнить этот цикл. Автор данного стиха бывшая студентка КГМУ, сочинила его ещё в 1996 году.

ЩУК у АЦЕТИЛ ЛИМОН ил,
Но нарЦИС сА КОН ь боялся,
Он над ним ИЗОЛИМОНН о
АЛЬФА-КЕТОГЛУТАР ался.

СУКЦИНИЛ ся КОЭНЗИМ ом,
ЯНТАР ился ФУМАРОВ о,
ЯБЛОЧ ек припас на зиму,
Обернулся ЩУК ой снова.

Здесь последовательно зашифрованы субстраты реакций цикла трикарбоновых кислот:

  • АЦЕТИЛ-коэнзим А
  • ЛИМОНная кислота
  • ЦИСАКОНитовая кислота
  • ИЗОЛИМОННая кислота
  • АЛЬФА-КЕТОГЛУТАРовая кислота
  • СУКЦИНИЛ-КОЭНЗИМ A
  • ЯНТАРная кислота
  • ФУМАРОВая кислота
  • ЯБЛОЧная кислота
  • ЩУК (щавелевоуксусная кислота)

Ещё один стих для запоминания цикла трикарбоновых кислот:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.

Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.

Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.

А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.

Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.

Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

Стих — это неплохо. Его, конечно, еще запомнить надо, тогда вопрос: «Как запомнить цикл Кребса» волновать студентов не будет.

Как запомнить Цикл Кребса? История!

Я вдобавок предлагаю вот какую штуку — каждую из этих стадий (кислоту) преобразовать в образы и картинки:

ЩУКА — щавелевоуксусная кислота
АЦ тек сражается с ЕТИ — ацетил-коэнзим А
ЛИМОН — лимонная кислота
ЦИС терна с КОН ями — цисаконитовая
Рисованный на холсте (ИЗО ) ЛИМОН — изолимонная кислота
АЛЬФ держит ГЛУ бокую ТАР у — альфа-кетоглутаровая кислота
на СУК у сидит и пилит его ЦИНИ к — сукцинил-коэнзим А
ЯНТАРЬ — янтарная кислота
в ФУ ражке МАР ля — фумаровая кислота
ЯБЛОКО — яблочная кислота

Альф Ацтек
Янтарь Ети


Теперь вам нужно соединить их последовательно друг с другом. И тогда Цикл Кребса запомнится следующим образом.

Возле широкой реки ЩУКИ стали выпрыгивать из воды и нападать на АЦтека и ЕТИ, которые из без низ сражались друг с другом. Закидав их ЛИМОНами ацтек и ети сели на цистерну с конями и побыстрее стали убираться с этого места. Они не заметили как врезались в ворота, на которых был изображен(ИЗО) ЛИМОН. Изнутри ворота им открыл АЛЬФ, держащий стеклянную ГЛУбокую ТАРу. В это время сидящий на СУКу ЦИНИк стал забрасывать их ЯНТАРНыми камнями. Прикрываясь ФУражками с МАРлей наши герои спрятались за огромные ЯБЛОКи. Но оказывается ЩУКи оказались хитрыми и поджидали их за яблоками.

Фууф, наконец-то дописал эту историю. Дело в том, что придумать такую историю в голове — очень быстро. Буквально 1-2 минуты. А вот изложить её текстом, да ещё так, чтобы поняли окружающие это совсем другое.

Запоминание цикла Кребса акронимом

Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.


Надеюсь, теперь вам понятно, как можно запомнить Цикл Кребса.

Loading...Loading...