Сенсорный датчик прикосновения к двери. Емкостной сенсорный датчик своими руками

В данной статье мы подробно (но не слишком) рассмотрим принципы электричества, которые позволяют нам обнаруживать прикосновение человеческого пальца, используя немного больше, чем просто конденсатор.

Конденсаторы могут быть сенсорными

В течение последнего десятилетия или около того стало действительно трудно представить себе мир с электроникой без сенсорных датчиков прикосновений. Смартфоны являются тому наиболее заметным и распространенным примером, но, конечно, существуют и другие многочисленные устройства и системы, которые обладают датчиками прикосновений. Для построения сенсорных датчиков прикосновений могут использоваться и емкость, и сопротивление; в данной статье мы будем обсуждать только емкостные датчики, которые более предпочтительны в реализации.

Хотя применения, основанные на емкостных датчиках, могут быть довольно сложными, фундаментальные принципы, лежащие в основе данной технологии, достаточно просты. На самом деле, если вы понимаете суть емкости и факторы, которые определяют емкость конкретного конденсатора, вы стоите на правильном пути в понимании работы емкостных сенсорных датчиков прикосновения.

Емкостные сенсорные датчики касания делятся на две основные категории: на основе взаимной емкости и на основе собственной емкости. Первый из них, в котором конденсатор датчика состоит из двух выводов, которые действуют как излучающий и приемный электроды, является более предпочтительным для сенсорных дисплеев. Последний, в котором один вывод конденсатора датчика подключен к земле, является прямым подходом, который подходит для сенсорной кнопки, слайдера или колеса. В данной статье мы рассмотрим датчики на основе собственной емкости.

Конденсатор на базе печатной платы

Конденсаторы могут быть различных типов. Мы все привыкли видеть емкость в виде компонентов с выводами или корпусов поверхностного монтажа, но на самом деле, всё, что вам действительно необходимо, это два проводника, разделенных изолирующим материалом (т.е. диэлектриком). Таким образом, довольно просто создать конденсатор, используя лишь электропроводные слои, разделенные печатной платой. Например, рассмотрим следующие вид сверху и вид сбоку печатного конденсатора, используемого в качестве сенсорной кнопки прикосновения (обратите внимание на переход на другой слой печатной платы на рисунке вида сбоку).

Изолирующее разделение между сенсорной кнопкой и окружающей медью создает конденсатор. В этом случае, окружающая медь подключена к земле, и, следовательно, наша сенсорная кнопка может быть смоделирована, как конденсатор между сенсорной сигнальной площадкой и землей.

Возможно, сейчас вы захотите узнать, какую емкость реально обеспечивает такая разводка печатной платы. Кроме того, как мы рассчитаем ее точно? Ответ на первый вопрос: емкость очень мала, может составлять около 10 пФ. Что касается второго вопроса: не беспокойтесь, если забыли электростатику, потому что точное значение емкости конденсатора не имеет никакого значения . Мы ищем только изменения в емкости, и мы можем обнаружить эти изменения без знания номинального значения емкости печатного конденсатора.

Влияние пальца

Так что же вызывает эти изменения емкости, которые контроллер датчика прикосновений собирается обнаружить? Ну, конечно же, человеческий палец.

Прежде, чем мы обсудим, почему палец изменяет емкость, важно понимать, что здесь нет прямого электрического контакта; палец изолирован от конденсатора лаком на печатной плате и, как правило, слоем пластика, который отделяет электронику устройства от внешней среды. Так что палец не разряжает конденсатор , и, кроме того, количество заряда, хранимое в конденсаторе в определенный момент, не представляет интереса - скорее интерес представляет емкость в определенный момент.

Итак, почему же присутствие пальца изменяет емкость? Есть две причины: первая включает в себя диэлектрические свойства пальца, а вторая включает в себя его проводящие свойства.

Палец как диэлектрик

Обычно мы думаем о конденсаторе, как имеющем фиксированную величину, определяемую площадью двух проводящих пластин, расстоянием между ними и диэлектрической проницаемостью материала между пластинами. Мы, конечно, не можем изменить физические размеры конденсатора, просто прикоснувшись к нему, но мы можем изменить диэлектрическую проницаемость, так как палец человека обладает диэлектрическими характеристиками, отличающимися от материала (предположительно воздуха), который он вытесняет. Это правда, что палец не будет находиться в настоящей области диэлектрика, т.е. в изолирующем пространстве непосредственно между проводниками, но такое «вторжение» в конденсатор необязательно:

Как показано на рисунке, чтобы изменить диэлектрические характеристики, нет необходимости помещать палец между пластинами, поскольку электрическое поле конденсатора распространяется в окружающую среду.

Оказывается, что человеческая плоть является довольно хорошим диэлектриком, потому что наши тела состоят в основном из воды. Относительная диэлектрическая проницаемость вакуума равна 1, а относительная диэлектрическая проницаемость воздуха лишь немного выше (около 1,0006 на уровне моря при комнатной температуре). Относительная диэлектрическая проницаемость воды намного выше, около 80. Таким образом, взаимодействие пальца с электрическим полем конденсатора представляет собой увеличение относительной диэлектрической проницаемости, и, следовательно, приводит к увеличению емкости.

Палец как проводник

Любой, кто испытал на себе удар электрического тока, знает, что кожа человека проводит ток. Я уже упоминал выше, что прямого контакта между пальцем и сенсорной кнопкой (то есть ситуации, когда палец разряжает печатный конденсатор) нет. Тем не менее, это не означает, что проводимость пальца не имеет значения. Она на самом деле весьма важна, так как палец становится второй проводящей пластиной в дополнительном конденсаторе:

На практике мы можем предположить, что этот новый конденсатор, созданный пальцем, подключен параллельно существующему печатному конденсатору. Эта ситуация немного сложнее, потому что человек, использующий сенсорное устройство, электрически не соединен с землей на печатной плате, и, таким образом, эти два конденсатора не включены параллельно в обычном для анализа цепей смысле.

Тем не менее, мы можем думать о человеческом теле, как об обеспечивающем виртуальную землю, поскольку оно имеет относительно большую емкость, чтобы поглощать электрический заряд. В любом случае, нам не нужно беспокоиться о точной электрической связи между конденсатором с пальцем и печатным конденсатором; важным моментом является то, что псевдопараллельное соединение этих двух конденсаторов означает, что палец будет увеличивать общую емкость, так как конденсатор добавляется параллельно.

Таким образом, мы можем увидеть, что оба механизма влияния при взаимодействии пальца и емкостного датчика касания способствуют увеличению емкости.

Близкое расстояние или контакт

Предыдущее обсуждение приводит нас к интересной особенности емкостных датчиков касаний: измеряемое изменение емкости может быть вызвано не только контактом между пальцем и датчиком, но и близким расстоянием между ними. Я обычно думаю о сенсорном устройстве, как о замене механического переключателя или кнопки, но емкостная технология датчиков касаний на самом деле представляет собой новый уровень функциональности, позволяя системе определять расстояние между датчиком и пальцем.

Оба механизма изменения емкости, описанные выше, оказывают влияние, которое зависит от расстояния. Для механизма на базе диэлектрической проницаемости количество «мясного» диэлектрика взаимодействие с электрическим полем конденсатора увеличивается при приближении пальца к проводящим частям печатного конденсатора. Для механизма на базе проводящих свойств емкость конденсатора с пальцем (как и любого другого конденсатора) обратно пропорциональна расстоянию между проводящими пластинами.

Для некоторых электротехнических устройств имеется необходимость в сенсорном включении, то есть начало или конец работы должно происходить при простом касании пальца руки к сенсорному контакту. Применить это можно в схемах электронных замков, сигнализаций, обычной техники, что упрощает её включение и выключение (всего лишь нужно прикоснуться).

В этой статье предлагаю достаточно простую электронную схему сенсорного включателя, которую может собрать практически любой человек. Состоит эта схема всего из нескольких электронных компонентов, главными из которых являются биполярные транзисторы, выполняющие роль усилителей сигнала. Ко входу (базе) первого транзистора подсоединяется сам провод сенсора (к которому нужно прикасаться). С выхода транзистора выходит усиленный в сотни раз сигнал, что подаётся на следующий элемент. Второй транзистор усиливает ещё больше уже до этого усиленный сигнал, ну и то же самое делает третий каскад схемы. В итоге мы из крайне малого сигнала, идущего от сенсора, получаем ток, что может зажечь светодиод (либо включить реле, что будет управлять тем или иным устройством).

Напомню, что биполярный транзистор представляет собой полупроводниковый элемент, имеющий три вывода (эмиттер, коллектор и база). Он способен усиливать электрический сигнал в 10-1000 раз. При подаче на управляющий вывод небольшого сигнала (где-то от 0,6 до 0,7 вольт) на выходе мы можем получить уже электрический ток и/или напряжение гораздо большей величины.

База является управляющим электродом, относительно эмиттера. То есть, от источника питания подается на базу (через ограничивающий резистор, создающий некое смещение) и коллектор определенная величина напряжения. При напряжении между базой и эмиттером до 0,6 вольт транзистор ещё будет закрыт (не будет пропускать через себя ток относительно эмиттера и коллектора). Повышая напряжение между базой и эмиттером уже от 0,6 и где-то до 0,7 вольт мы постепенно открывает транзистор от полностью закрытого состояния в полностью открытое. Следовательно, транзистор выполняет роль переменного резистора, который управляется небольшими токами и может изменять своё сопротивления от бесконечно большого до практически нулевого (всё же оно есть, хоть и весьма малое).

Резисторы в схеме простого сенсорного включателя, стоящие в цепи коллекторов, выполняют роль ограничителей тока. Их номиналы 1 мегаом, 1 килоом и 220 ом. Можно ставить маленькой мощности, небольшие по размеру (токи в схеме достаточно малые). В данной электрической схеме применены биполярные транзисторы типа КТ315 (подойдут с любым буквенным индексом). Эти транзисторы старотипные, найти их можно где угодно, и стоят они копейки (если их покупать). Заменить их можно на КТ3102 или любые другие, с похожими характеристиками. Эти транзисторы имеют проводимость n-p-n (новичкам стоит это учесть). Можно поставить в схему транзисторы и обратной проводимости (p-n-p) серии КТ361 или КТ3107, но тогда нужно будет поменять полярность на питании (на плюс подключать минус и наоборот).

Хочу заметить, что данная электрическая схема сенсора является не фиксированной, то есть выходное устройство будет срабатывать и работать только тогда, когда вы касаетесь входного сенсора. Как только вы перестанете касаться сенсора, то и выходное устройство также выключится.

Изначально в схему простого сенсорного включателя я поставил на выход обычный светодиод, который просто зажигался при касании сенсора. Если вместо светодиода поставить небольшое реле, то можно уже на выходе схемы иметь переключатель, что можно подключить к различным электрическим устройствам (звонку, лампочки, двигателю и т.д.). Параллельно катушки реле нужно будет припаять электролитический конденсатор небольшой ёмкости (где-то от 100 до 1000 микрофарад, и напряжением не менее чем у источника питания). А также подключить диод (обратное включение), что позволит исключить влияние на саму схему напряжения самоиндукции, возникающей на катушки реле. Диод подойдет любой!

P.S. Учтите, что светодиод имеет полярность! Если вы поставите его неправильно, то светиться он не будет. В случае использования реле учитывайте выходной ток транзистора. То есть, КТ315 может иметь на своём выходе силу тока не более 100 миллиампер. Следовательно, если поставить большую релюшку, у которой катушка потребляет большие токи, то транзистор может выйти из строя. Нужно ставить реле с соответствующим током на катушке или ставить более мощный биполярный транзистор на выходе схемы.

Как известно, — любая металлическая поверхность, например, металлический предмет, пластина или дверная ручка. У сенсоров отсутствуют механические элементы, что в свою очередь придает им значительную надежность.

Сфера использования подобных устройств достаточно широка это и включение звонка, выключатель света, управление электронными устройствами, группа датчиков сигнализаций и прочее. Когда это необходимо, использование сенсорного датчика позволяет обеспечить скрытое размещение включателя.

Описание работы сенсорного датчика прикосновения

Функционирование ниже приведенной схемы сенсора основывается на применении имеющегося в домах электромагнитного поля, которое создает размещенная в стенах электропроводка.

Прикосновение к датчику сенсора рукой равносильно подсоединению антенны к чувствительному входу усилителя. В результате этого наведенное сетевое электричество поступает на затвор полевого транзистора, который играет роль электронного переключателя.

Данный сенсорный датчик прикосновения достаточно прост вследствие применения полевого транзистора КП501А (Б, В). Данный транзистор обеспечивает пропускание тока до180 мА при предельном напряжении исток-сток до 240В для буквы А и 200В для букв Б и В. Для защиты от статического электричества на его входе имеется диод.

Полевой транзистор обладает большим входным сопротивлением, и для того чтобы управлять им хватает статического напряжения, которое больше порогового значения. Для данного типа полевого транзистора номинальное пороговое напряжение составляет 1…3 В, а максимально допустимое равно 20 В.

При прикосновении рукой к датчику Е1, степень наведенного потенциала на затворе является достаточной для открывания транзистора. При этом на стоке VT1 будут электрические импульсы продолжительностью 35 мс, и имеющие частоту электрической сети 50 Гц. Для переключения большинства электромагнитных реле необходимо всего 3…25 мс. Для предотвращения дребезга контактов реле, в момент прикосновения, в схему включен конденсатор C2. За счет накопленного заряда на конденсаторе, реле будет включенным даже в тот полупериод сетевого напряжения, когда VT1 будет закрыт. Пока есть прикосновение к датчику сенсора, реле будет во включенном состоянии.

Конденсатор C1 увеличивает помехоустойчивость сенсора к высокочастотным радиопомехам. Менять чувствительность прикосновения к сенсору можно путем изменения емкости C1 и сопротивления R1. Группа контактов К1.1 осуществляет управление внешними электронными устройствами.

Добавив к данной схеме триггер и узел коммутации сетевой нагрузкой можно получить .

Источник: «Полезные схемы», Шелестов И.П.

Портативный USB осциллограф, 2 канала, 40 МГц....

Наверное уже никому в наше время не нужно объяснять, что такое тачпад? Этим удобным манипулятором снабжены все современные ноутбуки. Вместо джойстика или мышки, для перемещения курсора и кликов мы используем тачпад, или, по-научному, сенсорную панель. В этом уроке мы будем работать с простым ёмкостным датчиком, который позволяет отследить всего одно касание (вот он, на рисунке справа). Наша задача, связать касание датчика пальцем с каким-нибудь действием, скажем, с излучением звука зуммером. Трогаем датчик — зуммер пищит. Не трогаем — молчит. Для решения этой задачи нам понадобится соединить вместе контроллер Ардуино Уно, зуммер, и, собственно, сам датчик. В качестве последнего будем использовать небольшую платку на базе сенсорного чипа TTP223. Для питания устройства годится напряжение в диапазоне от 2 до 5.5 Вольт. Данный датчик является цифровым, а значит он выдает только одно из двух возможных значений: истина или ложь. В электронике это соответствует высокому и низкому уровню напряжения, соответственно.

1. Подключение

Использованный нами в уроке ёмкостный датчик имеет три контакта:
  • VCC — питание +5В;
  • GND — земля;
  • OUT — сигнал.
Как и все прочие цифровые датчики, линию OUT мы подключаем к любому свободному цифровому входу Ардуино Уно. Традиционно, используем для работы с датчиком вход №2. Получившаяся схема будет иметь вид: Внешний вид макета

2. Программа

Теперь попробуем оживить всё это. Все что нам потребуется — это считывать состояние вывода №2 на каждом такте программы, и в зависимости от полученного значения, включать или выключать зуммер. Вот что у нас получается: int capPin = 2; int buzzPin = 11; void setup() { pinMode(capPin, INPUT); pinMode(buzzPin, OUTPUT); } void loop() { if(digitalRead(capPin)) digitalWrite(buzzPin, HIGH); else digitalWrite(buzzPin, LOW); } Наконец, записываем программу на Ардуино Уно, и смотрим что получилось!

Нередко в электронике находит свое применение такой радиоэлемент, как геркон. Его особенность состоит в способности замыкания контактов при облучении магнитным полем. Что это означает? Взяв простой магнит или разместив недалеко от геркона электромагнит, можно легко производить замыкание и размыкание контактов этого радиоэлемента. По своей сути он и является своеобразным бесконтактным датчиком.

Определение понятия

Что же такое бесконтактный датчик? Под ним понимают такой электронный прибор, который регистрирует присутствие определенного объекта в зоне своего действия и срабатывает без каких-либо механических или любых других воздействий.

Бесконтактные датчики применяются в самых различных сферах. Это создание бытовых приборов и системы охраны объектов, промышленные технологии и автомобилестроение. Кстати, в народе данный элемент называют «бесконтактным выключателем».

Преимущества

Среди основных достоинств бесконтактных датчиков выделяют их:

Компактные размеры;

Высокую степень герметичности;

Долговечность и надежность;

Небольшой вес;

Разнообразие вариантов установки;

Отсутствие контакта с объектом и обратного воздействия.

Классификация

Существуют различные типы бесконтактных датчиков. Они классифицируются по принципу действия и бывают:

Емкостными;

Оптическими;

Индуктивными;

Ультразвуковыми;

Магниточувствительными;

Пирометрическими.

Рассмотрим каждый из этих видов приборов отдельно.

Емкостные датчики

В основе этих приборов находится измерение электроконденсаторов. В их диэлектрике и находится тот объект, который подлежит регистрации. Назначение бесконтактных датчиков такого типа заключается в работе со множеством приложений. Это, например, распознавание жестов. Емкостными выпускают автомобильные датчики дождя. Такие приборы дистанционно измеряют уровень жидкости в процессе обработки различных материалов и т. д.

Емкостной бесконтактный датчик представляет собой аналоговую систему, работающую на расстоянии до семидесяти сантиметров. В отличие от других типов подобных приборов, он обладает большей точностью и чувствительностью. Ведь изменение в нем емкости происходит всего лишь в несколько пикофарад.

Схема бесконтактного датчика данного типа включает в себя пластины, состоящие из проводящей печатной платы, а также зарядку. В этом случае происходит формирование конденсатора. Причем это будет происходить в любое время либо в проводящем заземленном элементе, либо в каком-то объекте, диэлектрическая проницаемость которого отлична от воздуха. Такой прибор сработает и в случае появления в зоне действия устройства человека или части его тела, которая будет аналогична потенциалу земли. По мере приближения, например, пальца, изменится емкость конденсатора. И даже учитывая то, что система является нелинейной, обнаружить возникший в просматриваемых границах посторонний объект для нее не составит никакого труда.

Схема подключения такого бесконтактного датчика может быть усложнена. В устройстве могут быть задействованы сразу несколько независимых друг от друга элементов в направлениях влево/вправо, а также вниз/вверх. Это позволит расширить возможности прибора.

Оптические датчики

Такие бесконтактные выключатели на сегодняшний день находят свое широкое применение во многих отраслях человеческой деятельности, где работает оборудование, необходимое для обнаружения объектов. При подключении бесконтактного датчика используется кодирование. Это позволяет не допустить ложного срабатывания устройства при постороннем влиянии источников света. Работают подобные датчики и при низких температурах. В этих условиях на них надевают термокожухи.

Что представляют собой оптические бесконтрольные датчики? Это электронная схема, реагирующая на изменение того светового потока, который падает на приемник. Подобный принцип действия позволяет зафиксировать наличие или же отсутствие объекта в той или иной пространственной области.

В конструкции оптических бесконтактных датчиков имеется два основных блока. Один из них - источник излучения, а второй - приемник. Они могут находиться как в одном, так и в различных корпусах.

При рассмотрении принципа действия бесконтактного датчика можно выделить три типа оптических устройств:

  1. Барьерный. Работа оптических выключателей такого типа (Т) осуществляется на прямом луче. При этом приборы состоят из двух отдельных частей - передатчика и приемника, располагающихся соосно друг относительно друга. Тот поток излучения, который испускается излучателем, должен быть направлен точно в приемник. При прерывании луча объектом выключатель срабатывает. Такие датчики имеют хорошую помехозащищенность. Кроме этого, им не страшны ни капли дождя, ни пыль и т. д.
  2. Диффузный. Работа оптических выключателей типа D основана на использовании отраженного от объекта луча. Приемник и передатчик такого устройства располагают в одном корпусе. Излучателем направляется поток на объект. Луч, отражаясь от его поверхности, распределяется в различных направлениях. При этом часть потока возвращается назад, где и улавливается приемником. В результате выключатель срабатывает.
  3. Рефлекторный. Такие оптические бесконтактные датчики относятся к типу R. В них используется луч, отраженный от рефлектора. Приемник и излучатель такого устройства также располагаются в одном корпусе. При попадании на рефлектор луч отражается, оказывается в зоне приемника, в результате чего и происходит срабатывание устройства. Такие приборы действуют при расстоянии до объекта не более 10 метров. Возможно, их применение для фиксации полупрозрачных предметов.

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих - катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один - непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса.

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Бесконтактный датчик температуры магниточувствительного типа применяют:

На химических и металлургических производствах;

В районах Крайнего Севера;

На подвижном составе;

В холодильных установках;

На автокранах;

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

Суммарного излучения, измеряющими полную тепловую энергию тела;

Частичного излучения, измеряющие энергию ограниченного приемником участка;

Спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

Включать и выключать свет;

Регулировать яркость;

Контролировать работу отопительных приборов, сообщая об изменениях температуры;

Открывать и закрывать жалюзи;

Включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

Loading...Loading...