Что такое никель и чем он опасен. Токсические свойства никеля и его соединений

Никель микроэлемент. Не секрет, что минералы занимают важное место среди жизненно необходимых человеку веществ . Роль многих макро- и микроэлементов столь важна для нас, что учёные назвали их незаменимыми. Это означает, что их запасы в человеческих тканях, органах, жидкостях должны непременно постоянно пополняться в необходимых количествах из внешней среды. Мы получаем их с пищей и водой. К таким незаменимым минералам относится и микроэлемент никель , об истории открытия которого, свойствах, вреде и пользе для здоровья людей и будет рассказано в этой статье.

Никель в оптимальной природной форме и дозировке содержится в продуктах пчеловодства — таких как цветочная пыльца, маточное молочко и трутневый расплод, которые входят в состав многих натуральных витаминно-минеральных комплексов компании «Парафарм»: «Леветон П », «Элтон П», «Леветон Форте», «Апитонус П», «Остеомед», «Остео-Вит», «Эромакс», «Мемо-Вит» и «Кардиотон». Именно поэтому мы уделяем столько внимания каждому природному веществу, рассказывая о его важности и пользе для здоровья организма.

Из истории никеля

История никеля окутана саксонскими преданиями и мифами. Немецкие горнорабочие часто находили минерал, напоминающий медную руду, однако, как ни старались, выплавить медь из него не могли. Поэтому и окрестили его «купферникель», то есть «медный дьявол » или «дьявольская медь », ибо были убеждены, что злополучную руду подкидывает им озорной горный дух, гном Ник. Nickel в переводе с немецкого означает «злой гном/дух», а в жаргоне рудокопов это было ругательство. Впрочем, в загадочном минерале не было ничего дьявольского, а в стекольном производстве его использовали для придания стеклу зелёного оттенка. На самом деле купферникель был соединением никеля с мышьяком , но разгадать его истинную природу долго не удавалось. В 1751 году шведский учёный Кронштедт получил из «дьявольской меди » новый химический элемент – металл, который, следуя саксонской традиции, назвал никелем (лат. Niccolum , Ni ).

Однако немецкие горняки были отнюдь не первыми, столкнувшимися с никелем. С древнейших времён люди находили вкрапления прочного, красивого и пластичного металла в метеоритах и изготовляли из него оружие и талисманы. Так, в украшениях древних египтян присутствует около 30% никеля. А китайцы ещё до нашей эры включали этот минерал в сплав под названием пакфонг , позднее завезённый и в Европу, где из него чеканили деньги.

Но, конечно, говорить о широкомасштабной никелевой промышленности можно только с конца ХI Х века.

Свойства и применение
никеля

Со свойствами и применением никеля мы сталкиваемся ежедневно, даже если не подозреваем об этом, ведь этот минерал прочно вошёл в различные сферы жизни современного человека.

Этот красивый светло-серебрист ый металл , немного похожий на серебро или платину, отличается пластичностью и ковкостью, невысокой химической активностью – теми качествами, которые делают его привлекательным в различных производствах. Литой никель почти так же прочен, как мягкая сталь. Низкая реакционная способность не даёт ему разрушаться под воздействием воздуха, воды, паров, многих кислот, словом, делает его стойким к коррозии. А пластичность, вязкость этого металла в чистом виде позволяет изготавливать из него тончайшие листы и проволоку. Важна в промышленности и способность его смешиваться с разными металлами в многочисленные сплавы.

В нашем быту мы часто имеем дело с никелированными вещами – посудой, перилами, трубами, кранами, деталями мебели. Также постоянно присутствуют в нашем обиходе предметы, сделанные из сплавов, содержащих никель, и самого никеля: деньги, швейные иголки и фурнитура, очки, украшения, гитарные струны… В медтехнике сплавы никеля применяются для изготовления протезов и брекет-систем. Когда мы видим нержавеющую сталь, мы снова сталкиваемся с никелем, непременно в ней присутствующим. Не обходятся без никеля электротехника и кораблестроение, химическая промышленность и оборонная индустрия, машиностроение, атомная и нефтегазовая промышленность.

Никель
в организме человека

Значение никеля в организме человека ещё не до конца изучено, однако открывшихся фактов учёным хватило, чтобы признать его незаменимым для здоровья веществом . Наибольшее содержание никеля у нас в поджелудочной и паращитовидных железах, гипофизе, печени и почках, мышцах и лёгких. И хотя концентрация его в тканях и органах крайне мала (всего в нашем теле в среднем около 10 мг, но возможны колебания от 2 до 14 мг), он необходим для нормального роста и развития, рождения жизнеспособного потомства. Это доказали эксперименты над животными, из рациона которых исключался никель.

Дело в том, что этот микроэлемент – активный участник минерального обмена. От него зависят ферментативные процессы – разложение и образование белков, углеводов, жиров, гормонов, витаминов и других соединений. Так, никель влияет на окисление и усвоение аскорбиновой кислоты, позволяет лучше всасываться кальцию.

Никель ускоряет метаболизм железа и выработку гемоглобина и, соответственно, благотворно влияет на образование эритроцитов и снабжение кислородом тканей. Он улучшает усвоение меди и витамина В 12 , также нужных для кроветворения. Именно поэтому при значительных потерях крови, его вводят подкожно для экстренного увеличения числа эритроцитов.

Интересна взаимосвязь никеля с инсулином и глюкозой: благодаря ему в поджелудочной железе активнее вырабатывается инсулин, и таким образом снижается содержание сахара в крови. Введение цинка в организм диабетиков помогает продлить активность полученного инсулина. Достаточное содержание никеля в поджелудочной железе значительно уменьшает риск развития рака этого органа.

Положительное влияние никеля на половую сферу мужчин связана с его причастностью к образованию спермы.

Кроме того, этот минерал способствует уменьшению давления и активности адреналина, избыточные выбросы которого опасны для здоровья. Усиливая антидиуретическу ю активность гипофиза, никель помогает почкам. Исследования подтвердили роль никеля в функционировании нуклеиновых кислот ДНК и РНК, то есть он задействован в передаче наследственной информации. Обеспечивает этот микроэлемент и сохранность структурной целостности мембран клеток.

Итак, никель важен для организма как участник общего обмена веществ, кроветворения, гормональных и окислительно-вос становительных процессов, влияет на иммунитет, здоровье и самочувствие человека в целом.

Какова суточная норма никеля ?

Говоря о суточной норме никеля в день, сразу подчеркнём, что искусственно синтезированные соединения этого микроэлемента токсичны для людей и могут вызвать рак, поэтому речь идёт исключительно о никеле, содержащемся в продуктах питания или выделенном из таковых. Учёные полагают, что в сутки достаточно потреблять от 0,1 до 0,3 мг этого минерала.

Чем опасны
недостаток и
избыток никеля в организме?

Дефицит никеля отмечается редко. Лабораторные опыты над животными показывают, что его нехватка ведёт к гипопигментации кожных покровов, повышению содержания сахара, снижению холестерина и эритроцитов в крови, анемии, болезням печени, уменьшению моторной активности, замедлению роста и развития, гибели потомства, ранней смерти.

Однако гораздо чаще медикам приходится сталкиваться с избытком никеля в организме человека и его пагубными последствиями для здоровья, поэтому увлекаться никельсодержащим и фармакологически ми препаратами не стоит. Доза в 40 – 50 мг признана токсичной для людей. Перенасыщенность тканей и органов этим микроэлементом чревата серьёзными нарушениями:

  • нарушения обмена веществ;
  • структурные изменения в хромосомах и других клеточных элементах;
  • нарушение ферментативных и гормональных процессов;
  • анемия, ухудшение кроветворения;
  • ослабление иммунной системы;
  • нервная возбудимость и подверженность стрессу;
  • нарушение пигментации – витилиго;
  • развитие опухолей;
  • астма;
  • отёки мозга и лёгких;
  • расстройство половой функции;
  • дерматиты и экзема;
  • поражения почек и печени и др.

Особенно опасно постоянное воздействие (а тем более острое отравление при несоблюдении техники безопасности) никеля и его соединений на производстве. Но и использование некачественных никелированных предметов быта также может быть причиной аллергий. То же касается и украшений из этого светлого металла. Любителям пирсинга следует быть особенно внимательными к выбору аксессуаров, ведь их контакт с металлом гораздо интенсивнее, чем у всех. Избыточномувоздействию никеля подвергают себя курильщики, вдыхающие повышенное количество этого микроэлемента вместе с табачным дымом.

Никель в добавках
и витаминно-минера льных комплексах для спортсменов

В связи с нешуточными последствиями переизбытка рассматриваемого нами минерала может возникнуть вопрос: зачем же добавляют никель в добавки и витаминно-минера льные комплексы для спортсменов ? Не будем забывать, что высокие физические нагрузки значительно усиливают все обменные процессы и, соответственно, потребность в необходимых организму веществах. Кроме того, обнаружена избирательная концентрация никеля в чёрном веществе головного мозга – зоне, ответственной за регуляцию двигательных функций и тонус мышц. Для спортсменов важно и то, что этот микроэлемент помогает в деле наращивания мускулов . Однако для проявления этого его свойства в организме человека должно находиться нормальное количество витамина В 12 .

Содержание никеля
в продуктах
питания

Сбалансированное питание обеспечивает человека всеми нужными витаминами и минералами, и никель здесь не исключение. Поэтому полезным будет знание о том, каково содержание никеля в продуктах питания.

Богаты никелем зерновые и бобовые культуры (0,089–1,09 мг/кг) и печень (0,125–0,5 мг/кг). В овощах и фруктах (капуста, картофель, морковь, лук, вишня, абрикосы и др.) среднее содержание его колеблется от 0,1 до 2,0 мг/кг; в мясе – 0,02–0,1, а в яйцах – 0,02–0,03 мг/кг. Содержится этот микроэлемент и в дрожжах, орехах, грибах, рыбе и морепродуктах, молоке, петрушке и укропе, семенах тыквы, какао и многих других продуктах. Примерно четверть необходимого нам никеля мы получаем с водой.

ВСЁ О СПОРТЕ

Дела на работе, домашние заботы, соцсети – все это нещадно пожирает наше свободное время. Даже поход в фитнес-зал после 30 лет дается непросто. При этом банальная зарядка с гантелями уже вас не устраивает и хочется чего-то большего. Какие главные причины заниматься спортом? Где взять мотивацию записаться в секцию плавания, боевых искусств или просто поиграть в…


Общий характер действия

Никель – необходимый микроэлемент, в частности для регуляции обмена ДНК. Однако, его поступление в избыточных количествах может представлять опасность для здоровья. Здесь особенно отчетливо видна справедливость слов Парацельса о том, что “нет токсичных веществ, а есть токсичные дозы”.

Никель в сочетании с кобальтом, железом, медью также участвует в процессах кроветворения, а самостоятельно - в обмене жиров, обеспечении клеток кислородом. В определенных дозах никель активизирует действие инсулина. Потребность в никеле вполне обеспечивается рациональным питанием, содержащим, в частности, мясо, овощи, рыбу, хлебобулочные изделия, молоко, фрукты и ягоды.

При повышенных концентрациях обычно может проявляться в виде аллергических реакций (дерматит, ринит и пр.), анемии, повышенной возбудимости центральной и вегетативной нервной системы. Хроническая интоксикация никелем повышает риск развития новообразований (легкие, почки, кожа) - никель влияет на ДНК и РНК.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni 2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

Повышенное содержание никеля в окружающей среде приводит к появлению эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1 группе канцерогенов.

Ni активирует или угнетает ряд ферментов (аргиназу, карбоксилазу, 5-нуклеозидфосфатазы и др.); влияет на дефосфорилирование аминотрифосфата. В крови человека Ni связывается преимущественно с гамма-глобулином сыворотки. После введения NiCI2 кроликам в сыворотке крови обнаружен белок-никелоплазмин, идентифицированный как a1-микроглобулин (Nomoto ев al.; Cotton). Однако, 90% Ni в крови кроликов через 24 ч связываются с альбуминами, лишь незначительная часть поступившего NiCI2 выявлена во фракциях а2-глобулина. В организме Ni образует комплексы с биокомплексонами. Ni имеет особое сродство к легочной ткани, в эксперименте при любом пути введения | поражает ее. Оказывает влияние на кроветворение, углеводный обмен. Металлический Ni и его соединения вызывают образование опухолей у животных, а также профессиональный рак. Канцерогенное действие Ni связывают с нарушением метаболизма клеток. Соли Ni вызывают поражение кожи человека с развитием повышенной чувствнтель-ности к металлу.

Острое отравление .

При однократном введении в желудок белых крыс NiCl2-возбуждение, затем угнетение; покраснение слизистых и кожи; понос. Комплексные соли Ni с ЭДТА менее токсичны, чем соли неорганических кислот. Введение в трахею мелкодисперсного Ni в дозах 5 и 100 мг вызывает гибель белых крыс в короткие сроки от воспаления легких с периваскулярным отеком, кровоизлияниями во всех внутренних органах. У выживших животных в отдаленные сроки-гиперплазия лимфоидной ткани вокруг сосудов и бронхов.

У кроликов, кроме того, исхудание, повышение проницаемости сосудов, изменения на ЭКГ, нарушение функций печени и почек. Аналогичную картину вызывает Ni2Oз в несколько больших дозах. После введения в трахею крыс 50 мг Ni(OH)2 или Ni(OH)3 животные погибают в 1-2 сутки при резких кровоизлияниях и отеке легких; такая же доза Ni203 переносится без видимых признаков отравления, кроме похудания и увеличения массы легких. Однократное введение в трахею крыв. 60 мг пыли, содержащей 95% NiO, через 3 месяца вызвало развитие мелких пылевых очажков, позднее узелки, состоящие почти, исключительно из макрофагов. Пыль, содержавшая 64% NiO и NiS, в тех же условиях опыта привела к гибели 2/3 животных в первые 5 суток. У выживших крыс через 9-12 месяцев - диффузный умеренный перибронхнальный и периваскулярный склероз.

Хроническое отравление

Животные

Длительное поступление NiSO4 с водой при суточной дозе 0,54 мг/кг вызывало у кроликов резкие дегенеративные изменения в печени, почках, сердечной мышце и гиперплазию селезенки. У крыс, получавших в течение 13 недель NiCI по 0,3 мг/кг (по Ni), -снижение числа эритроцитов, каталазной активности крови, массы тела. Введение через рот по 4-12 мг/кг Ni(С2H3O2) и NiС12 в течение 200 дней переносится кошками и собаками без видимых проявлений токсического действия. Исхудание, снижение содержания аскорбиновой. кислоты и щелочной фосфатазы во внутренних органах и слизистой кишечника отмечали у крыс при ежедневной дозе NiCI2 0,5-5 мг/кг (по Ni) в течение 7 месяцев. При добавлении к корму 0,01% NiSО4 (по Ni) у молодых бурых крыс - нарушение активности ряда ферментов в крови и внутренних органах, повышение активности церулоплазмнна в печени. Указывают также на повреждение семенников у крыс при длитель-ном введении NiSO4.

Круглосуточное вдыхание в течение 3 месяцев аэрозоля металлического NI в концентрации 0,02-0,5 мг/м 3 сказалось у крыс повышением артериального давления, эритроцитозом,.сдвигом в активности аргиназы, каталазы, нарушением выделительной функции печени, повышением копропорфирина в моче. Аэрозоль NiCl2 в концентрации 0,1 мг/м 3 при вдыхании крысами по 12 ч в день 6 раз в неделю уже через 2 недели вызвал разрастание бронхиального эпителия, клеточную инфильтрацию альвеолярных перегородок. Круглосуточное воздействие концентраций 0,005-0,5 мг/м 3 (по Ni) сопровождалось также угнетением иодфиксирующей функпии щитовидной железы. Вдыхание NiO в концентрации 120 мг/м 3 по 12 ч в день уже через 2- недели вызвало макрофагальную реакцию и клеточную инфильтрацию альвеолярных перегородок у крыс, а при 80-100 мг/м* по 5 ч в день в течение 9-12 месяцев развивался умеренный склероз легких с, образованием клеточных узелков в лимфатических железах и слущиванием бронхиального эпителия. У молодых хомяков вдыхание 39-170 мг/м 3 по 6 ч в день в течение 3 недель и 61,6 мг/м 3 в течение 3 месяцев не вызывало заметных сдвигов. В легких задержалось ~20% вдыхаемой NiO, которая удалялась довольно медленно. Аэрозоль Ni2O3 в концентрации 340-360мг/м 3 по 1,5 ч в день в течение 4 месяцев сначала увеличил число эритроцитов и содержание гемоглобина, а затем эта показатели вернулись к норме. Из 20 крыс 7 пали в первый период затравки. При микроскопическом изучении погибших и убитых после 4 месяцев отравления-воспалительные изменения слизистой верхних дыхательных путей, очаговая десквамативная или катарально-геморрагическая пневмония.

Вдыхание пыли файнштейна (11,3% металлического Ni, 58,3% Си) или пыли из электрофильтров (52,3% NiO) по 5 ч в день 5 раз в неделю в течение 6 месяцев в концентрации 70 мг/м 3 привело к гибели 24 крыс в первом случае и 6 во втором. В обоих случаях - фазное изменение уровня сахара в крови, нарушение соотношения белковых фракций в сыворотке крови и снижение в ней содержания холестерина. Несколько повысилось число эритроцитов и уровень гемоглобина, число ретикулоцитов и эритробластическая реакция костного мозга. Патологоанатомически-бронхит, пневмонии и фиброзные изменения. В печени - обеднение гликогеном и дистрофические изменения; в почках - повреждения эпителия канальцев и атрофия клубочков. При концентрации обоих аэрозолей 7 мг/м 3 и той же длительности воздействия уловимых изменений не отмечено. При вдыхания пыли цинк-никелевых ферритов (FeO, ZnO и NiO) в концентрации 100-120 мг/м у крыс картина отравления, сходная с полученной при ингаляции одной NiO.

Человек

В производстве аккумуляторных батарей при содержании в исходном продукте 72% Ni выявлено отсутствие или снижение обоняния при концентрации N1 в воздухе 16-560 мг/м 3 . При 10-70 мг/м 3 (в воздухе еще и Cd) и стаже 8 лет и более-белок в моче. При стаже 5-10 лет 84% рабочих жаловались на головные боли, головокружение, раздражительность, понижение аппетита, эпигастральные боли, одышку. Часто наблюдались снижение кровяного давления, функциональные нарушения центральное нервной системы, гипо- и анацидные гастриты, нарушения антитоксической и протромбннообразовательной функции печени, тенденция к лейкопении, лимфо- к моноцитозу. Сходные изменения обнаружены у рабочих производства щелочных аккумуляторов при получении массы, содержащей Ni(OH)2 и NiSO4. При электролитическом получении Ni у рабочих основных специальностей частые носовые кровотечения, полнокровие зева и бронхов, резкие изменения слизистой носа и даже прободение носовой перегородки, трудно снимаемый серый налет на краю десен, темные налеты на языке. Концентрация NiSO4 обычно не превышала 0,2-8 мг/м 3 , но иногда доходила до 70 мг/м". Но одновременно в воздухе был туман H2S04 в концентрациях 25-195 мг/м 3 .

Из обследованных 458 рабочих цехов электролитического рафинирования Ni

при концентрации Ni в воздухе 0,02-4,53 мг/м 3 (дополнительно в воздухе H2S04; стаж 10 лет и выше) у 357 человек-носовые кровотечения, частый насморк, нарушение обоняния, хронические синуситы. Изменения придаточных полостей носа обнаружены у 302 человек. Поражения лобных пазух протекают довольно скрытно и выявляются рентгенологически. При получении Ni гидрометаллургическим способом из сульфидных руд при концентрации гидрозоля солей никеля.0,021-2,6 мг/м 3 (в воздухе также пары H2SO4)-поражения слизистой носоглотки в 4-7 раз чаще, чем у рабочих других цехов. Описаны случаи бронхиальной астмы у работающих с Ni. При повышенном содержании Ni в атмосферном воздухе- сдвиги в периферической крови, анемия, ретикулоцитоз, а также снижение кислотности желудочного сока. В производстве никелевых ферритов (концентрация пыли в воздухе 11 -180 мг/м 3) среди 145 рабочих при среднем стаже до 4 лет у 88 человек - умеренная анемия, лейкоцитоз или лейкопения, нарушение стойкости эритроцитов.

Канцерогенное действие.

Предполагают, что канцерогенное действие Ni связано с внедрением его в клетки, где он вызывает нарушения ферментных и обменных процессов, в результате которых, возможно, образуются канцерогенные продукты. Никель связывается с РНК, значительно меньше с ДНК, вызывая нарушения структуры и функции нуклеиновых кислот, и с гистамином. Опасность бронхогенного рака при вдыхании Ni, возможно, зависит и от задержки его в легких.

Животные

В эксперименте опухоли получены от металлического Ni, NiO,сульфидов, но не от растворимых солей. Бластомогенный эффект по-видимому, не зависит от степени растворимости, а возможно, от проникания Ni в клетку и изменений, вызываемых в клеточных мембранах. Металлический Ni, введенный в носовую полость, в плевру и бедренную кость, вызвал злокачественные опухоли (частично-остеогенные саркомы) у 30% белых крыс, погибших в течение 7-16 месяцев после введения. В результате вдыхания пыли чистого Ni, полученного из Ni(CO)4, с дисперсностью до 4 мкм (6 ч в день 4-5 раз в неделю в течение 21 месяца) белые мыши, белые крысы и морские, свинки погибали чаще всего в течение первых 12-15 месяцев. У морских свинок и большинства крыс-множественные аденоматозные разрастания в альвеолах легких и гиперпластическая пролиферация эпителия конечных бронхов. У 6 морских свинок-раковые опухоли. У крыс и хомяков, вдыхавших пыль металлического Ni вместе с SOi, развивались воспалительные изменения, бронхоэктазы, метаплазия легочного эпителия, но не выявлено раковых опухолей в легких. По-видимому, раздражающее действие SO2 не стимулировало бластомогенноё действие Ni. На месте имплантации NiS в мышцах крыс возникали фибромио- саркомы, дающие метастазы в легкие.

Человек

Рак носа, придаточных полостей и легких в Англии давно отнесен к профессиональным заболеваниям. Показано, что у работающих с Ni и его соединениями риск заболевания раком легких в 5 раз, а раком носа и его придаточных полостей в 150 раз превышает нормальную частоту этих заболеваний. На повышенную опасность рака легких среди рабочих, занятых рафинированием Ni и производством его солей. К t974 г., было известно 253 случая профессионального рака верхних дыхательных путей и легких у рабочих производства Ni. У рабочих, занятых электролитическим получением Ni, при вдыхании паров электролита, содержащего NiSO4 через 6-7 лет на фоне аносмии, перфорации носовой перегородки развивался рак носа и его придаточных полостей. Известен случай развития ретикулосаркомы носовой полости у работницы, занимавшейся 5 лет никелированнем и вдыхавшей туман (аэрозоль) солей Ni. Возможно, усугубляющим было раздражающее действие других ингредиентов ванн. Описаны случаи рака легких среди работающих, по добыче, обогащению н переработке медно-никелевых руд.

По некоторым данным, смертность от рака легких, полости носа и его пазух составляет 35,5% всех смертей рабочих, занятых электролизом и рафинированием Ni. Среди работающих на никелевых производствах выявлена повышенная смертность от рака по сравнению с контрольными данными. На первом месте был рак легких, на втором - желудка. Наиболее часто страдали работавшие при пирометаллургических процессах в обжиго-восстановительных цехах (стаж 12-23 года, концентрации пыли колебались в пределах порядка 10-10 3 мг/м 3 ; в ней содержалось 7й% Ni в виде сульфидов, NiO или металлического Ni). Высока смертность от рака в цехах электролиза при наличии в воздухе аэрозолей NiCl2 и NiSO4. Средний стаж работы у умерших от рака легких 7-13 лет, от рака желудка-10-14.

Действие на кожу

Считают, что Ni не обладает прямым раздражающим действием на кожу. Однако у никелировщиков, у работающих на производстве Ni электролизом и имеющих контакт с его солями наблюдаются никелевая экзема, “никелевая чесотка”: фолликулярно расположенные папулы, отек, эритема, пузырьки, мокнутие. Профессиональные никелевые дерматиты составляют 11% всех профессиональных заболеваний кожи, а в электролитическом производстве Ni-15%. У работающих в гидрометаллургическом производстве Ni заболевания кожи в 2- 4 раза чаще, чем в других цехах, и обнаружены у 5,5% среди 651 осмотренных рабочих.

Ni и его соединения-сильные сенсибилизаторы. У морских свинок сенсибилизация вызывается внутрикожным введением NiSO4. Соединяясь с белками эпидермиса, Ni образует истинный антиген. У больных никелевыми дерматозами определяли циркулирующие в крови антитела. Связывание Ni в комплексные соединения снижает его сенсибилизирующее, но не раздражающее действие. В опытах на морских свинках лаурилсульфат натрия предотвращал развитие сенсибилизации к Ni. Диметилдитиокарбамат натрия и диметилглиоксим ослабляют кожные реакции у чувствительных к Ni лиц, по-видимому, при этом образуются и соответствующие комплексные соединения.

Чувствительность человека к сенсибилизирующему действию Ni очень велика. Описаны случаи аллергических поражений у кассирш банков, имевших дело с металлическими монетами. Источником аллергии могут быть даже инъекционные иглы. У кроликов аппликация Ni на кожу вызвала картину отравления и гибель. Металл обнаруживался в мальпигиевом слое кожи, в сальных и потовых железах. Через изолированную кожу трупа человека

проходит 1,45 мкг Ni/см 3 , Применение растворителей вместе с соединениями Ni способствует, их прониканию в кожу.

Поступление в организм, распределение и выделение.

Из желудочно-кишечного тракта всасываются не только соли, но и высокодисперсный металл и окислы. В крови Ni образует комплекс с белками плазмы - никелоплазмин. Никель, поступивший в результате вдыхания или через рот, распределяется в тканях более или менее равномерно, однако в дальнейшем проявляется тропность Ni к легочной ткани. Выделение осуществляется через почки, и желудочно-кишечный тракт. Преимущественный путь выделения зависит как от свойств соединения (растворимости и др.), так и от пути поступления в организм. Содержание Ni в моче работающих с ним лиц до 1 мг/л, хотя и превосходит нормальное, по-видимому, не сигнализирует о возможности интоксикации.

Предельно допустимая концентрация.

Окись никеля(П), окись никеля(Ш),сульфиды никеля (в пересчете на Ni) 0,5 мг/м 3 .

Соли никеля в виде гидроаэрозоля (в пересчете на Ni) 0,0005 мг/м 3 .

Аэрозоль медно-никелевой руды- 4 мг/м*. Для аэрозолей файнштейна, никелевого концентрата, пыли электрофильтров никелевого производства рекомендуется 0,1 мг/м 3 .

Индивидуальная защита. Меры предупреждения.

Респираторы изолирующие, шланговые противогазы или респираторы. Максимальное устранение прямого контакта соединений Ni с кожей. Защитная паста ИЭР-2, ланолино-касторовая мазь (ланолина 70, касторового масла 30 частей),"смазывание кожи рук 10% диэтилтиокарбаматом или диметилглиоксимом, мазью с ЭДТА. Снижение концентрации электролитов в ваннах при никелировании, устранение ручной загрузки и выгрузки ванн, механизация операций никелирования.

Предварительные и периодические медицинские осмотры работающих с Ni и его соединениями (электролиз, применение и разливка) 1 раз в 12 месяцев, дерматологом 1 раз в 6 месяцев, отоларингологом (при работе с NiSO4)-1 paз в месяц. Для рабочих, занятых никелированием, - 1 раз в 12 месяцев. Рекомендуется проведение кожных тестов при приеме на работу с соединениями Ni, а при проведении медосмотров-рентгенография придаточных полостей носа. Организация ингаляториев при производствах. Рекомендуют проведение ежегодных онкологических осмотров работающих в основных цехах производства Ni, а в список профессиональных болезней, помимо рака верхних дыхательных путей и легких у работающих в производстве Ni, включить также и рак желудка.



Исследования различных Европейских организаций (Nickel Institute, Nickel Producers Environmental Research Association (NiPERA)) о влиянии никеля на проявление аллергических реакций показывают предрасположенность 5–20% населения к такому заболеванию, как ACD (аллергическим контактным дерматитом).

Незаметный враг для здоровья женщин

При этом, в исследованиях приведена доказательная база того, что происходит постепенное накопление токсичного никеля в организме и проявляться данное заболевание может даже на участках тела не соприкасающихся с самим аллергеном. По статистике около 10–12% женского населения и 2–3% мужского населения имеют врожденную аллергию на никель, еще у части людей выявлен приобретенный (чаще всего при постоянном контакте с аллергеном) дерматит – никелевый дерматит или «никелевый зуд».

Новый стандарт в ювелирной отрасли

Результатом данных многолетних исследований стало принятие Европейского стандарта EN 1811:2011 который запрещает использование никеля не только в Ювелирной продукции, но и ограничивает его использование в изделиях повседневного обихода (пуговицы, молнии, застежки и т. д). В нашем Госстандарте тоже есть подобное ограничение в «ГОСТ 10733-98 Государственный стандарт РФ. Часы наручные и карманные механические. Общие технические условия», но только в отношении часовых изделий.

Раздел «Требования безопасности» ГОСТ 10733-98

  • Пункт 4.29.1: Предельно допустимая норма миграции никеля не должна быть более 0,5 мкг/см2 в неделю для узлов и деталей внешнего оформления часов (корпус, браслет, цепочка, пряжка ремешка), имеющих непосредственный контакт с телом человека.
  • Пункт 6.21: Контроль за выделением никеля согласно 4.29.1 проводится по методике, утвержденной в установленном порядке.

Следуя стандартам

Компания «ЭПЛ. Якутские бриллианты» предлагает своим клиентам ювелирные изделия произведенные по технологии «Nickel FREE ». Мы отказались от дешевого и ядовитого никеля, а вместо него в производстве наших

Добыча никеля в Российской Федерации не имеет важного стратегического значения, как, например, добыча нефти и газа. Тем не менее, страна располагает значительными запасами залежей руд данного металла и активно разрабатывает разведанные месторождения. Объемы добычи ежегодно наращиваются, а последние 5 лет мировым лидером по производству никеля является российская компания ГМК «Норильский никель».

Основные места добычи на территории России находятся в Мурманской и Воронежской областях, а также на Урале и в Норильском районе. Доля мировых запасов никеля на территории Российской Федерации оценивается в 13,2%, что является лидирующим показателем среди всех стран.

Есть ли угроза экологии?

Но, как известно, природа не терпит пустоты, поэтому выемка полезных ископаемых связаны с определенными рисками. Так что стоит разобраться, чем вредна добыча никеля. Во-первых, как и в любой другой горнодобывающей отрасли, остается большое количество отходов, в состав которых входят горные породы, бедные руды и различные химические вещества. Извлеченные на поверхность они начинают вступать в неконтролируемые химические реакции, что может привести к экологической катастрофе.

Из района добычи исчезнет вся растительность, будет нарушена естественная среда обитания многих живых организмов, которые не сумеют приспособиться к новым условиям, и будут вынуждены либо покинуть заселенную местность, либо окажутся на грани вымирания в районе добычи. А, учитывая тот факт, что природный ареал постоянно сокращается из-за бурной деятельности человека, это станет серьезной проблемой в деле охраны природы и сохранения всех ее обитателей.

Добывающие компании утверждают, что они осознают все угрозы от добычи матрериала и обещают хранить отходы в специальных подземных хранилищах, которые будут запечатаны и не смогут наносить вред окружающий среде. Но это все на бумаге, а на практике зачастую фирмы гонятся за мгновенной прибылью, не считаясь с последствиями своей деятельности.

Поэтому вопросы экологической безопасности необходимо выносить на государственный уровень и создавать комиссии, которые будут тщательно следить за соблюдением технологического процесса и охранных мероприятий. Негативные последствия добычи никеля сказываются и на грунтовых водах. Дело в том, что выемка руды происходит с глубины до 300 метров, поэтому некоторое количество вредных элементов попадает в подземные воды.

Местные риски

Добыча вещества в Воронежской области давно тревожит местных жителей. Местные активисты собираются на постоянные акции протеста и проводят разъяснительную работу с населением. Но видимых результатов это пока не приносит. Представители добывающей компании утверждают, что у них все под контролем и нет причин для волнения. А тем временем вред от добычи никеля уже заметен невооруженным глазом.

Экологи утверждают, что без серьезных вливаний в строительство защитных сооружений, область уже через несколько лет окажется на грани экологической катастрофы. Стоит учитывать и тот факт, что переработка руды оказывает еще больше негативного влияния на окружающую среду. А в нашем государстве, к сожалению, гораздо дешевле заплатить штраф, чем заниматься вопросами экологической безопасности производства.

Против добычи никеля выступают не только общественные активисты, но и члены природоохранных организаций. Они предупреждают, что неконтролируемая разработка и отсутствие необходимых охранных сооружений могут дорого обойтись местным жителям в недалеком будущем. Сейчас далеко не все осознают угрозу, так как крупное добывающее предприятие дает тысячи рабочих мест и наполняет местный бюджет. Но в случае чего, добытчики попросту покинут отработанное производство и переместятся в другой район огромной страны, а местные жители останутся один на один со своими проблемами.

Например, Новохоперске добыча ведется путем строительства подземного рудника, глубина которого составляет 245 метров. После выемки всех никельсодержащих руд остается пустота, которую необходимо заполнить специальным составом. В противном случае может случиться провал верхних слоев грунта, что чревато серьезной техногенной катастрофой для близлежащих населенных пунктов.

А добыча никеля в Прихоперье уже привела к загрязнению подземных вод, что нанесло непоправимый вред сельскохозяйственным предприятиям региона. Значительно снизилась урожайность многих важных культур, а некоторые растения вообще перестали давать всходы. Аграрии начали бить тревогу и даже написали открытое письмо к руководству Российской Федерации, которое пока остается без ответа.

На сегодняшний день экологи заявляют о загрязнении 700 гектар земель, которые ранее использовались для выращивания промышленных культур. И эта площадь увеличивается едва ли не ежедневно. Под угрозой из-за добычи никеля находится и Черноземье. В этом районе находится природоохранная заповедная зона с уникальной экосистемой, которой без принятия срочных мер грозит полное уничтожение.

Кроме того, в регионах добычи никелевых руд у населения отмечается рост числа заболеваний дыхательных путей различной тяжести. Возрастает и риск развития злокачественных опухолей. Поэтому государство должно взять этот вопрос на жесткий контроль и решительно пресекать все преступления против природы. В противном случае через несколько десятилетий человечество полностью исчерпает все ресурсы Земли и наша планета станет непригодной для проживания.

Токсические свойства никеля и его соединений

Немаловажную роль в загрязнении окружающей среды играют тяжелые металлы, к которым относится и никель.

Содержание никеля в земной коре составляет 8–10–3 % (по массе). В основном он встречается в виде сульфидных медно-никелевых, окисленных силикатных и мышьяковистых руд. Никель используют для получения высокопластичных и стойких к коррозии сплавов (с железом, хромом, медью и др.); для никелирования медицинских инструментов, деталей автомобилей, велосипедов, химической аппаратуры, изготовления аккумуляторов; в жировой и парфюмерной промышленности; для приготовления катализаторов; в производстве органических соединений.

Основные источники загрязнения окружающей среды никелем – предприятия горнорудной промышленности, цветной металлургии, машиностроительные, металлообрабатывающие, химические, приборостроительные и другие, использующие в технологических процессах различные соединения никеля; тепловые электростанции, работающие на мазуте и каменном угле; автотранспорт.

Загрязнение никелем чаще всего локальное: образуются биогеохимические «провинции» с повышенным его содержанием в почве, воде, воздухе и местных продуктах питания растительного и животного происхождения.

В воду никель может попадать в результате выветривания из коренных пород и вымывания из почвы. Значительные количества никеля поступают в водоемы со сточными водами промышленных предприятий.

Загрязнения атмосферного воздуха соединениями никеля происходит в результате выбросов предприятиями по его производству и переработке; при сжигании твердого и жидкого топлива. Никель поступает в воздух с выхлопными газами автотранспорта в количествах, зависящих от вида используемого топлива, а также в виде продуктов износа автомобильных шин и деталей автомобилей.

Таблица. Содержание никеля (мг/кг сырой массы) в продуктах растительного и животного происхождения

Зерновые и бобовые

Овощи, фрукты

Мясо (говядина, баранина, свинина)

Куриные яйца

В морской воде содержится около 10 –5 % никеля, в пресных водах – 10 –6 –10 –7 %, в подземных –
до 10 –5 %.

В сутки в организм человека поступает с пищей в среднем 0,3–0,6 мг никеля, что, по мнению многих исследователей, покрывает суточную потребность в нем взрослого человека.

Загрязняя почву, никель и его соединения вызывают изменения микробных ценозов: снижается количество бактерий в поверхностном слое почвы и возрастает на глубине 10–15 см; уменьшается количество актиномицетов и возрастает численность грибов.

В водоемах в результате сорбции ионов, образования нерастворимых соединений, а также поглощения различными организмами происходит осаждение никеля. В речных илах его количество достигает 0,01%.

Токсичность никеля и его соединений зависит от пути поступления в организм и растворимости. Токсичность растворимых в воде соединений никеля (сульфата и хлорида) примерно в 30 раз выше, чем плохо растворимых (оксида и сульфита).

Хлорид никеля в концентрациях 0,1–1,5 мг/л вызывает гибель ряда водорослей; в концентрации 0,7 мг/л и выше – гибель дафний. В концентрации 4,0–4,5 мг/л он вызывает гибель гольяна и карпа через 200 ч, а в концентрации 8,1 мг/л – через несколько часов.

В концентрации 1 мг/л никель вызывает хлороз овса, при более высоких концентрациях наблюдается задержка роста овощных и зерновых культур, существенное увеличение содержания никеля в растениях.

В организм никель поступает в основном через дыхательные пути, желудочно-кишечный тракт и кожу.

У рабочих, занятых в производстве никеля и его соединений, распространены заболевания верхних дыхательных путей и бронхолегочной системы: бронхиты, эмфизема (расширение) легких, снижение жизненной емкости легких, астма. Как хронические, так и острые отравления никелем и его соединениями могут приводить к летальному исходу. Известен случай гибели рабочего, выполнявшего сварочные работы в течение 90 мин без респиратора.

Разные виды животных имеют разную чувствительность к загрязнению воздуха соединениями никеля. При высоких концентрациях никеля (для данного вида) в воздухе интоксикация развивалась в первые же часы, что сопровождалось появлением одышки, апатией, потерей аппетита, рвотой, диареей и симптомами поражения нервной системы; признаки легочной недостаточности нарастали вплоть до гибели животных через несколько часов. При хроническом воздействии, как и при остром, в первую очередь нарушения происходили в легочной ткани.

Интоксикация никелем и его соединениями наблюдается и при попадании его в организм с продуктами питания или водой.

Хроническое воздействие хлорида никеля (до 8,6 мг/кг) на людей в течение 3 месяцев приводило к проявлению клинических симптомов интоксикации: летаргии, атаксии (расстройству координации движений), нарушению дыхания, снижению температуры тела, слюнотечению, косоглазию, запору. Снижался баланс и всасывание кальция, магния и фосфора, меди, уменьшалась фиксация йода (воздействие на функциональное состояние щитовидной железы), были отмечены признаки развития белковой дистрофии.

Абсолютно смертельная доза металлического никеля (взвесь металлической пыли) для крыс и мышей составляет 1200 мг/кг, минимальная смертельная доза – 500 мг/кг. У животных наблюдались снижение массы тела, лейкоцитоз, повышение температуры тела, изменение проницаемости сосудов кожи, нарушение функции печени и почек и изменения в ЭКГ. В большинстве случаев животные погибали через 3–5 дней после введения никеля.

Описан случай смерти двухлетнего ребенка, проглотившего 570 мг/кг сульфата никеля, через 8 ч в результате остановки сердца.

В малых концентрациях никель может вызвать у чувствительных к нему людей дерматиты, экзему рук. В то же время эти же заболевания возникают и при недостаточном содержании никеля в пищевых продуктах.

Данные о токсичности никеля и его соединений при воздействии на кожу немногочисленны. Кожные аппликации хлористого никеля морским свинкам вызывали аллергические реакции на фоне токсического эффекта. Втирание 5%-ного раствора сульфата никеля в кожу спины кроликов приводило к появлению симптомов выраженной интоксикации.

В крови людей, больных контактными дерматозами, выявлено повышенное содержание никеля.

Первые эпидемиологические исследования онкологической опасности различных соединений никеля были начаты более 60 лет назад. Смертность от рака всех локализаций среди рабочих 6 предприятий по производству никеля (за 13 лет) превышала смертность в контрольной группе – населении городов, расположенных вблизи этих предприятий.

Согласно классификации Международного агентства исследований рака (IARC) металлический никель (пыль) и гипосульфит никеля являются канцерогенами и опасны в концентрациях 0,0004–0,4 и 0,0001–0,1 мг/м 3 , соответственно.

Медико-гигиеническое обследование рабочих электролизного цеха на никелевом комбинате «Апатит» в г. Мончегорске (воздействие никеля в концентрациях 0,087–0,183 мг/м 3) показало, что частота спонтанных абортов у женщин, работающих на комбинате, намного превышала частоту спонтанных абортов в семьях, в которых никто из супругов не подвергался профессиональному воздействию никеля. Риск спонтанных абортов у женщин при действии никеля на мужчин в 2 раза ниже по сравнению с риском при действии никеля непосредственно на женщин.

Установлено, что максимальное накопление никеля в тканях плода происходит на 12–19-й неделе беременности. Выявлено наличие никеля и в организме новорожденных. Это свидетельствует о переходе никеля через плаценту. Медицинское исследование выявило значительное увеличение количества новорожденных с пороками развития у работниц никелевого комбината (16,9%) по сравнению с контрольной группой женщин-строителей (5,8%).

В культуре клеток китайского хомячка сульфат, гипосульфит и оксид никеля вызывают выраженный мутагенный эффект.

Соединения никеля обычно не влияют на частоту хромосомных аберраций в лимфоцитах человека, клетках костного мозга мышей, но увеличивают частоту появления микроядер.

Введение в желудок самцов мышей сульфата никеля в дозе 5,0 и 1,0 мг/кг (1/20 и 1/100 ДЛ 50 – дозы, вызывающей гибель 50% животных) вызывало выраженный мутагенный эффект: увеличение частоты доминантных летальных мутаций (ДЛМ) на всех стадиях сперматогенеза. При спаривании с самками самцов, в половых клетках которых возникли ДЛМ, происходит либо гибель оплодотворенной яйцеклетки до имплантации в матку, либо гибель развивающегося эмбриона.

Воздействие соли никеля в дозе 0,5 мг/кг (1/200 ДЛ 50) не увеличивало частоту ДЛМ в половых клетках ни на одной из стадий сперматогенеза. На основании полученных данных установлен пороговый уровень (1/100 ДЛ 50) и не действующий уровень (1/200 ДЛ 50) сульфата никеля.

Для веществ в различных средах существуют максимальные концентрации, при которых эти вещества не оказывают неблагоприятного действия на людей ни на производстве, ни в быту. В нашей стране установлены предельно допустимые концентрации (ПДК) вредных веществ в производственных условиях и в окружающей среде.

ПДК в воздухе рабочей зоны – это концентрации, при которых вредные вещества не вызывают у работающих (при средней 8-часовой рабочей смене на протяжении всего рабочего стажа) заболеваний или отклонений в состоянии здоровья непосредственно в процессе работы или в отдаленные сроки.

Для никеля и его солей установлены следующие ПДК.

1. Для водоемов санитарно-бытового водопользования – 0,1 мг/л.

2. Для атмосферного воздуха населенных мест: растворимые соли никеля – 0,0002 мг/м 3 ; никель металлический и окись никеля – 0,001 мг/м 3 .

3. Для воздуха рабочей зоны: карбонил никеля – 0,0005 мг/м 3 ; соли никеля в виде гидроаэрозоля в пересчете на никель – 0,005 мг/м 3 ; никель металлический, его окиси, сульфид и смеси этих соединений в пересчете на никель – 0,05 мг/м 3 .

Loading...Loading...