Биография джона дальтона.

Я давно уже не встречался с Полем Дальтоном, когда случай столкнул нас на бульваре Де-Итальен. Несколько лет скитался я по свету. Из-за внезапной смерти родителей и гибели любимого брата однообразная жизнь Франции стала для меня непереносимой. Я был богат и предпринял ряд исследовательских экспедиций, изъездив всю Африку и Китай. Я рисковал жизнью в Трансваале, но был на стороне буров скорее от скуки, чем по убеждению.

Теперь я снова оказался в Париже, такой же одинокий и равнодушный ко всему, как до отъезда. И без друзей. Они или забыли меня, или ушли, или были для меня потеряны. Одни женились, другие умерли.

Как-то июльским днем я шел по бульвару и собирался пообедать. Но где? Холостяк каждый день должен решать эту задачу, и всегда она вызывала у меня отвращение. Внезапно передо мной вырос мужчина: низкорослый, худощавый, в нелепой шляпе с крохотными полями на бритой голове. Он остановился и протянул руку, воскликнув:

– Валлорб! Старина Валлорб!

Я машинально пожал руку и посмотрел растерянно и вызывающе, как всегда смотришь на незнакомца, который окликает тебя по имени.

– Очевидно, придется напомнить. Дорогой мой Валлорб, представляю тебе твоего друга Поля Дальтона.

Поль Дальтон! Это был самый близкий мой однокашник. Окончив Сен-Сир и прослужив три месяца в гарнизоне, он подал в отставку. И затем повел жизнь просто фантастическую. Не существовало на свете человека, который так основательно был бы запутан в самых невероятных неурядицах. Но никто не отделывался от неприятностей столь легко, как Поль, никто не умел так владеть собой.

– Неужели я постарел?

Нет, он не постарел. То же добродушное лицо, синие глаза горят жаждой приключений. Несмотря на малый рост, Поль производил впечатление силача. Ничуть не потолстел. Элегантный, широкоплечий, узкобедрый, он выглядел гораздо моложе своих тридцати пяти лет и, казалось, был готов встретиться лицом к лицу с любыми опасностями.

– Я не сразу узнал тебя, потому что ты сбрил усы. Поль улыбнулся.

– Незачем говорить тебе, что я следую моде: ты не поверишь. Я сбрил их потому, что удобнее не иметь усов, когда хочешь нацепить фальшивые.

– Я детектив, дорогой мой.

Детектив! Мой друг Поль Дальтон – детектив! Меня передернуло. Я испытывал почти физиологическое отвращение к полицейским. Впрочем, это не мешало мне призывать их во всю глотку, как только появлялась опасность.

Поль разглядывал меня с интересом.

– Вот что значит называть вещи своими именами! Скажи я тебе, что являюсь директором товарищества «Иггинс и K°», ты бы спросил только: «А кто такой Иггинс?»

– Вот я и спрашиваю: кто такой Иггинс?

– Иггинс – человек изумительный, ни с чем несравнимый мозг. Вот что такое Иггинс. Где он родился?.. Понятия не имею! Должно быть, в Северной Америке, а, может быть, в Англии.

– Как? Ты даже не знаешь национальности своего компаньона? Ведь он твой компаньон?

– Да, он мой компаньон. Вернее, я его компаньон. Он – Иггинс. Я – К°… Что до его национальности, ей-Богу, это меня не интересует. Он дважды спас мне жизнь. Это самый честный человек на свете, и я уверен в нем, как в самом себе. Этого мне достаточно.

Поль повторил несколько раздраженно:

– Да, этого мне достаточно. Я познакомился с Иггинсом в Америке. Три года назад мы снова встретились в Париже. Он создавал большое дело, частное сыскное агентство. Нет, не вроде сыскной конторы, во главе которых стоит «бывший инспектор Сюртэ». Настоящее дело, на американский лад. Предложил войти с ним в компанию. Я согласился, даже не раздумывая. Отдал ему все оставшиеся у меня деньги.

– И не жалеешь?

– Жалеть? О чем жалеть? Я веду ту жизнь, о которой мечтал. Приключения! Опасности! Вот, например, неделю назад мы брали одного шантажиста… Угрожая револьвером…

– Револьвером! – притворно восхитился я.

– Есть! У тебя ресницы дрогнули и заходили ноздри. Ты попался. Ты из наших.

– Что за чушь!

– Серьезно, ты богат, независим. Скучаешь. Идем со мной.

– А что скажет Иггинс?

– Иггинс ничего не скажет. Мы вправе выбирать себе сотрудников по вкусу. Достаточно будет, если я порекомендую ему тебя. Сам будешь вести какое захочешь дело. Согласен? Нет.

– Рассказывай! Давай адрес. При первом же интересном деле я вызову тебя.

– Я не приду.

Он окинул меня ироническим взглядом.

Сформулирован этот закон так: общее давление смесей газов, не реагирующих друг с другом, равно сумме пар­циальных давлении составных частей (компонентов).

P = p 1 + p 2 + p 3 + ….. + p n (14)

где Р - общее давление смеси газов; p 1 , p 2 , p 3 , …., p n – парциальные давления компонентов смеси.

Парциальным давлением называется давление, оказы­ваемое каждым компонентом газовой смеси, если предста­вить этот компонент занимающим объем, равный объему смеси при той же температуре. Иными словами, парциаль­ным давлением называется та часть общего давления га­зовой смеси, которая обусловлена данным газом.

Из закона Дальтона следует, что при наличии смеси газов п в уравнении (12) представляет собой сумму числа молей всех компонентов, образующих данную смесь, а Р- общее давление смеси, занимающей при температу­ре Т объем V.

Зависимость между парциальными давлениями и общим выражается уравнениями:

;
;
(15а) ,

где n 1 , n 2 , n 3 - число молей компонента 1, 2, 3, соответ­ственно, в смеси газов.

Отношения
называются мольными долями данного компонента.

Если мольную долю обозначить через N, то парциальное давление любого i-го компонента смеси (где i = 1,2,3,...) будет равно:

(15б) .

Таким образом, парциальное давление каждого компо­нента смеси равно произведению его мольной доли па общее давление газовой смеси.

Помимо парциального давления у газовых смесей раз­личают парциальный объем каждого из газов v 1 , v 2 , v 3 и т. д.

Парциальным называют объем, который занимал бы отдельный идеальный газ, входящий в состав идеальной смеси газов, если бы при том же количестве, он имел давление и температуру смеси.

Сумма парциальных объемов всех компонентов газовой смеси равна общему объему смеси

V = v 1 , + v 2 + v 3 + ... + v n (16) .

Отношение
и т. д. называется объемной долей первого, второго и т.д. компонентов газовой смеси. Для идеальных газов мольная доля равна объемной доле. Следовательно, парциальное давление каждого ком­понента смеси равно также произведению его объемной доли на общее давление смеси.

;
; p i = r i P (17).

Парциальное давление обычно находят из величины общего давления с учетом состава газовой смеси. Состав газовой смеси выражают в весовых процентах, объемных процентах и в мольных процентах.

Объемным процентом называется объемная доля, уве­личенная в 100 раз (число единиц объема данного газа, содержащегося в 100 единицах объема смеси)

;

Мольным процентом q называется мольная доля, уве­личенная в 100 раз.

;

Весовой процент данного газа - число единиц массы его, содержащихся в 100 единицах массы газовой смеси.

;

где m 1 , m 2 – массы отдельных компонентой газовой смеси; m общая масса смеси.

Для перехода от объемных процентов к весовым, что бывает необходимым в практических расчетах, пользуют­ся формулой:

(18) ,

где r i (%) - объемное процентное содержание i o компонен­та газовой смеси; M i -молекулярная масса этого газа; М ср - средняя молекулярная масса смеси газов, которую вычисляют по формуле

М ср = М 1 r 1 + M 2 r 2 + M 3 r 3 + ….. + M i r i (19)

где М 1 , M 2 , M 3 , M i - молекулярные мaccы отдельных газов.

Если состав газовой смеси выражен количеством масс отдельных компонентов, то среднюю молекулярную массу смеси можно выразить по формуле

(20) ,

где G 1 , G 2 , G 3 , G i – доли масс газов в смеси:
;
;
и т.д.

Пример 14. 5 л азота под давлением 2 атм, 2 л кислорода под давлением 2,5 атм и 3 л углекислою газа под давлением 5 атм перемешаны, причем объем, пре­доставленный смеси, равен 15 л. Вычислить, под каким давлением находятся смесь и парциальные давления каж­дого газа.

Азот, занимавший объем 5 л при давлении Р 1 = 2 атм, после смешения с другими газами распространился в объе­ме V 2 = 15 л. Парциальное давление азота р N 2 = Р 2 нахо­дим из закона Бойля-Мариотта (P 1 V 1 = P 2 V 2). Откуда

Парциальное давления кислорода и углекислого газа на­ходим аналогичным способом:

;

Общее давление смеси равно .

Пример 15. Смесь, состоящая из 2 молей водоро­да, некоторого количества молей кислорода и 1 моля азота при 20°С и давлении 4 атм, занимает объем 40 литров. Вычислить число молей кислорода в смеси и парциальные давления каждого из газов.

Из уравнения (12) Менделеева-Клапейрона находим общее число молей всех газов, составляющих смесь

;

Число молей кислорода в смеси равно

;

Парциальные давления каждого из газов вычисляем по уравнениям (15а):

;
;

Пример 16. Смесь газов имеет следующий объем­ный состав: водорода - 3%, двуокиси углерода - 11%, окиси углерода - 60%. Вычислить парциальные давления состав­ляющих смесь газов, если общее давление газовой смеси равно 1 атм. Определить массу 80 м 3 этом смеси при данном давлении и температуре 15ºС.

Парциальные давления отдельных газов в смеси можно вычислить, используя уравнение (17) p i = r i P :

Для определения массы газовой смеси вначале определя­ем ее среднюю молекулярную массу по формуле (19)

М ср = 20,03 + 440,11 + 280,26 + 280,60 = 28,98 .

Используя уравнение (13), находим

, откуда

Пример 17. Состав паров бензольных углеводоро­дов над поглотительным маслом в бензольных скрубберах, выраженный в единицах массы, характеризуется такими величинами: бензола C 6 H 6 - 73%, толуола С 6 Н 5 СН 3 - 21%, ксилола С 6 Н 4 (СН 3) 2 - 4%, триметилбензола С 6 Н 3 (СН 3) 3 - 2%. Вычислить содержание каждой составной части по объе­му и парциальные давления паров каждого вещества, если общее давление смеси равно 200 мм рт. ст.

Для вычисления содержания каждой составной части смеси паров по объему используем формулу (18)

.

Следовательно, необходимо знать М ср, которую можно вычислить из формулы (20):

.

;
;

;

Парциальные давления каждого компонента в смеси вычисляем, используя уравнение (17)

p бензола = 0,7678200 = 153,56 мм рт.ст. ; p толуола = 0,1875200 = 37,50 мм рт.ст. ;

p ксилола = 0,0310200 = 6,20 мм рт.ст. ; p триметилбензола = 0,0137200 = 2,74 мм рт.ст.

Годах. Официально рекомендованными являются англоязычные термины atomic mass unit (a.m.u.) и более точный - unified atomic mass unit (u.a.m.u.) (универсальная атомная единица массы, но в русскоязычных научных и технических источниках он употребляется реже).

Атомная единица массы выражается через массу нуклида углерода 12 C. 1 а. е. м. равна одной двенадцатой части от массы этого нуклида в ядерном и атомном природном состоянии. В году во 2-ом издании справочника терминов ИЮПАК установленно численное значение 1 а. е. м.:

1 а. е. м. ≈ 1,660 540 2(10)∙10 −27 кг = 1,660 540 2(10)∙10 −24 .

С другой стороны, 1 а. е. м. - это величина, обратная числу Авогадро , то есть 1/N A г. Такой выбор атомной единицы массы удобен тем, что молярная масса данного элемента, выраженная в граммах на моль , в точности совпадает с массой этого элемента, выраженной в а. е. м.

Поскольку массы элементарных частиц обычно выражаются в электронвольтах , важным является переводной коэффициент между эВ и а. е. м. :

1 а. е. м. ≈ 0,931 494 028(23) ГэВ/c ²; 1 ГэВ/c ² ≈ 1,073 544 188(27) а. е. м.

История

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Дальтон (единица измерения)" в других словарях:

    Атомная единица массы (обозначение а. е. м.), она же дальтон, внесистемная единица массы, применяемая для масс молекул, атомов, атомных ядер и элементарных частиц. Рекомендована к применению ИЮПАП в 1960 и ИЮПАК в 1961 годах. Официально… … Википедия

    Зиверт (обозначение: Зв, Sv) единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт это количество энергии, поглощённое килограммом… … Википедия

    У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq) единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… … Википедия

    У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… … Википедия

    У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S) единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… … Википедия

    У этого термина существуют и другие значения, см. Тесла. Тесла (русское обозначение: Тл; международное обозначение: T) единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого… … Википедия

    У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

    У этого термина существуют и другие значения, см. Грей. Грей (обозначение: Гр, Gy) единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате… … Википедия

    У этого термина существуют и другие значения, см. Вебер. Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в… … Википедия

    У этого термина существуют и другие значения, см. Генри. Генри (русское обозначение: Гн; международное: H) единица измерения индуктивности в Международной системе единиц (СИ). Цепь имеет индуктивность один генри, если изменение тока со скоростью… … Википедия

Наука. Величайшие теории Выпуск № 22, 2015 Еженедельное издание

Пер. с франц. - М.: Де Агостини, 2015.- 152 с.

© Enrique Joven Alvarez, 2012 (текст)

© RB A Collecionables S. A., 2014

© ООО «Де Агостини», 2014-2015

Иллюстрации предоставлены:

Age Fotostock: 35hd, 55, 79hg, 79hd, 111b, 143b; Archives RBA: 17, 27, 35hg, 45hg, 53, 77, 89, 106, 109, 11 lhd, 123, 126; Archives fédérales allemandes: 143hd; bibliothèque du Congrès des États-Unis: 42, 103; Bolckow: 11 lhg; British Museum, Londres: 58; Cockermouth Tourist Information Centre: 45hd; Simon Ledingham: 45b; The Manchester Literary and Philosophical Society: 98; musée d’Histoire de Berne: 143hg; Musée national de Stockholm: 51; National Portrait Gallery, Londres: 21; Marie-Lan Nguyen: 30; The Nobel Foundation: 134, 139; Mike Peel: 35b; Nick Smale: 79b; akg/Science Photo Library.

Введение

Сегодня, наверное, уже не осталось людей, которые никогда не слышали об атоме. Все мы в большей или меньшей степени знаем об этих частицах еще со школьной скамьи. Нам известно, что материя состоит из бесконечного множества крошечных частиц, которые, соединяясь, образуют более сложные структуры. Самые простые из них называются молекулами. Эти молекулы, в свою очередь, образуют еще более сложные структуры, и так далее, вплоть до знакомого нам макромира с его минералами, растениями и животными. Частью этого мира являемся мы сами - существа, наделенные разумом. Из атомов состоит абсолютно все. Мы даже думаем благодаря этим частицам.

Если бы мы ничего не знали об атомах и задались бы вопросом, из чего состоит материя и до какой степени ее можно разделить на составляющие, то оказались бы в затруднении. Частицы пыли, которые мы видим в воздухе невооруженным глазом,- это самые мелкие элементы материи? Или их тоже можно разделить? А как они соединяются? Какие механизмы обеспечивают это соединение? Все ли мельчайшие частицы одинаковы?

На эти и подобные вопросы искали ответы еще древнегреческие философы. Они призывали на помощь логику и в своих поисках дошли до того, что выработали атомистическое учение, согласно которому все в мире состоит из неделимых частиц, то есть деление возможно до определенной степени. Но эти неделимые частицы имеют слишком маленький размер, поэтому их нельзя увидеть невооруженным глазом. Таким образом, наглядно подтвердить атомистическое учение невозможно, и это было его главным подводным камнем.

Существовали и другие соблазнительные теории. Например, некоторые заявляли, что в основе окружающего нас мира лежат четыре основополагающие стихии - воздух, земля, вода и огонь. Это представление гораздо лучше соответствовало человеческим чувствам и ощущениям и потому продержалось около 15 веков. Философия превратилась в религию, а религия, в свою очередь, в догму, и лишь ценой огромных усилий человечеству удалось выбраться на свет. Благодаря астрономам и химикам наука наконец нашла свой путь. Мир не такой, каким мы его себе представляли. Наблюдения и лабораторные опыты все больше расшатывали существующие убеждения. Оказывается, человеку не под силу превращать свинец в золото и читать будущее по звездам.

Астрологи стали астрономами, алхимики - химиками и начали делать собственные выводы. Они выделили элементы, никак не связанные с четырьмя стихиями. Воду можно разделить на кислород и водород, воздух - это просто смесь газов, огонь - продукт горения, да и земля - тоже смесь разных элементов, которые можно отделить друг от друга. Всего было выделено 92 элемента. Каждое новое десятилетие несло удивительные открытия. Частицы материи не исчезают, а лишь меняют форму. Элементы соединяются всегда одним и тем же способом, и их соотношение в соединении измеряется целыми числами. Капризные газы оказались гораздо более предсказуемыми, чем предполагалось. Их температура, давление и объем были тесно связаны друг с другом. Казалось, все забыли об атомах...

По крайней мере, до появления в науке конца XVIII века англичанина Джона Дальтона. Поначалу этот скромный школьный учитель, не получивший университетского образования, не привлек к себе особого внимания. Известно, что он твердо придерживался религиозных убеждений, был невероятно дисциплинирован и отличался редкой способностью размышлять. Между уроками Дальтон погружался в изучение химии и вскоре оказался далеко впереди ученых своего времени. Он утверждал, что химическое поведение газов - и материи вообще - можно объяснить, если представить вещества в виде набора атомов, свойства которых, по его мнению, близки философским представлениям древних греков. Причем на этот раз атомная гипотеза нашла подтверждение в ходе опытов: химические реакции соединений и элементов, открытых Дальтоном, соответствовали ее постулатам. Окрыленный своими открытиями, Дальтон составил первую таблицу атомных весов (или масс). Он показал, что строение материи можно объяснить с помощью атомов, и это объяснение работает, причем очень хорошо. Такой подход позволял понять: несмотря на то что каждое вещество состоит из одинаковых атомов, свойства соединений меняются в зависимости от отношений атомных масс элементарных составных частей. Другими словами, благодаря теории Джона Дальтона химия была признана математически точной наукой. Английский ученый также утверждал, что атомы водорода - самые легкие из всех, которые можно обнаружить в соединении, и это помогло ему установить значение относительной атомной массы других известных элементов. Благодаря этому критерию - относительной атомной массе - Дальтону удалось, наконец, выстроить первую логичную классификацию отдельных элементов, известных в то время. Химические реакции полностью соответствовали этой новой атомной концепции: закон сохранения вещества, который Лавуазье предложил незадолго до этого, нашел теоретическое подкрепление; модель и практика соответствовали друг другу.

Атомная теория Дальтона встретила поддержку несмотря на настороженность и сопротивление некоторых ученых - как среди его современников, так и спустя столетие. Главной причиной неприятия был тот факт, что рассматриваемые элементы - то есть атомы - невидимы. (Хотя теория подкреплялась наблюдениями.) Для многих ученых эта теория, таким образом, оставалась не более чем гипотезой - безусловно, полезной, но ни в коем случае не окончательной.

До начала XX века не было возможным физически проверить существование атомов. «Физическая» проверка, с одной стороны, означала подтверждение реального существования частиц, а с другой - погружение в физику, которое позволило бы завершить путь, пройденный до этого момента учеными-химиками. Независимо от физических результатов - физика в итоге поколебала некоторые постулаты атомной теории Дальтона, в том числе его идею неделимости атомов - химические выводы не изменились. Определяющими стали открытие броуновского движения, радиоактивности и особенно - работы Эрнеста Резерфорда, который доказал существование атомного ядра и описал его природу. Благодаря этому атомному наваждению в начале XX века возникло уникальное поколение ученых - возможно, самое блестящее в истории науки. К сожалению, именно в результате их работы появилось и самое страшное изобретение в истории человечества - атомная бомба. Однако совершенно несправедливо ставить знак равенства между атомами и ядерными взрывами и еще более несправедливо связывать ядерные взрывы с именем человека, сформулировавшего предпосылки для появления атомной теории. Джон Дальтон никогда не помышлял об оружии.

1776 Ходит в школу квакеров в Пардшоухолле под руководством Джона Флетчера.

1779 После закрытия школы в Пардшоу-холле квакерская община открывает другую, в Иглсфилде, где Джон Дальтон сам становится учителем.

Джон Дальтон родился в небольшом поселении Иглсфилд в графстве Камберленд, в Англии, в семье бедного ткача Джозефа Дальтона и Деборы Гринап, происходившей из процветающей английской семьи квакеров – членов христианского движения, чья идеология шла в разрез с буквой Нового Завета.

В возрасте 15 лет, Джон помогает старшему брату Джонатану управлять делами в его частной квакерской школе в городке Кенда в графстве Камбрия.

С 1787 г. Джон ведёт дневник метеорологических наблюдений, и за всю свою дальнейшую жизнь, на протяжении более 57 лет, он запишет в нём около 20 000 погодных наблюдений.

Где-то около 1790 г. Дальтон строит планы на поступление на юридический или медицинский факультет института, но, поскольку он принадлежит к «сектантам» – к членам групп, противостоявших англиканской церкви – учиться в английских учебных заведениях ему запрещается.

Научная деятельность

В 1793 г. Дальтон переезжает в Манчестер, где получает пост учителя математики и натуральной философии в Новом колледже – сектантской академии, предоставляющей рабочие места религиозным нонконформистам с высшим образованием.

Все юношеские годы примером и образцом для подражания для Дальтона был Элайху Робинсон – выдающийся квакер, непогрешимый метеоролог, который и прививает мальчику интерес к математике и метеорологии.

В 1793 г. выходит в свет первая книга очерков Дальтона на метеорологические темы, основанная на его личных наблюдениях. Эта работа закладывает основы всех его дальнейших трудов.

В 1794 г. учёный пишет научную статью, озаглавленную «Необыкновенные факты касательно видения цветов» – одну из самых ранних своих работ на тему цветового восприятия человеческого глаза.

В 1800 г. Дальтон делает доклад, представляя публике свою статью «Экспериментальные заметки», речь в которых идёт об опытах с газами и изучении природы и химической составляющей воздуха относительно атмосферного давления.

В 1801 г. публикуется вторая книга, «Начальный курс английской грамматики». В этом же году учёный откроет «закон Дальтона» – эмпирический закон, полученный в результате работы с газами.

К 1803 г. его опыты с «давлением смеси идеальных газов» приводят к выведению «закона парциального давления», названного в честь учёного.

В начале 1800-х г.г. Дальтон формулирует теорию «теплового расширения» и «реакции нагрева и охлаждения в газах» с учётом расширения и сжатия воздуха.

В 1803 г. он пишет статью для Манчестерского литературного и философского общества, в которой представляет таблицу относительных атомных весов – одну из первых определений атомных весов в то время.

В 1808 г., в работе «Новая система философии химии», он делает дальнейшие разъяснения атомной теории и атомных весов, высказывая собственное видение того, как можно определить химические элементы, основываясь на их атомной массе.

В 1810 г. Дальтон издаёт приложение к своей книге «Новая система философии химии», в котором тщательно прорабатывает «атомную теорию строения вещества» и понятие «атомного веса».

Основные работы

В 1801 г. учёный выводит «закон Дальтона», также известный как «закон парциального давления Дальтона», который в наши дни широко применяется аквалангистами для измерения уровня давления на разных глубинах океана и его влияния на уровень потребления дыхательного газа и концентрации азота.

Он вводит термин «дальтонизм» для определения цветовой слепоты, получивший своё название от имени учёного. На эту тему Дальтон рассуждает в статье «Необыкновенные факты касательно видения цветов, с наблюдениями».

В вышедшем в свет в 1808 г. труде «Новая система философии химии», он разрабатывает «атомную теорию строения вещества» и становится первым учёным, составившим таблицу относительных атомных весов. Эта теория, заложившая основы для дальнейших исследований в данной области, актуальна и в наше время.

Награды и достижения

В 1794 г. Дальтона избирают членом Манчестерского литературного и философского общества. В 1800 г. учёный становится научным секретарём общества, а с 1817 г. возглавляет его.

Личная жизнь и наследие

Дальтон всю жизнь оставался холостяком, вёл скромную жизнь и общался лишь с несколькими друзьями, принадлежавшими к группе квакеров.

В 1837 г. учёный переносит сердечный удар, за которым, через несколько лет, последует ещё один, вследствие чего у него появляются проблемы с речью.

После третьего удара, настигшего Дальтона в возрасте 77 лет, он падает с кровати, а, некоторое время спустя, служанка, принесшая учёному чай, находит его мёртвым.

Похоронили Дальтона в Манчестерской ратуше.

В память о его научных достижениях, многие химики и биохимики пользуются внесистемной единицей измерения «дальтон», являющейся атомной единицей массы.

Когда Дальтон был ещё жив, в Манчестерской ратуше ему была воздвигнута большая статуя. Таким образом, он стал, пожалуй, единственным учёным, памятник которому был поставлен ещё при жизни.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Loading...Loading...