Несобственные интегралы I рода. Несобственные интегралы первого рода Сформулировать определение несобственного интеграла 1 го рода

Определенный интеграл

\[ I=\int_a^bf(x)dx \]

был построен в предположении, что числа $a,\,b$ конечны и $f(x)$ - непрерывная функция. Если одно из этих предположений нарушается, говорят о несобственных интегралах.

10.1 Несобственные интегралы 1 рода

Несобственный интеграл 1 рода возникает, когда по крайней мере одно из чисел $a,\,b$ бесконечно.

10.1.1 Определение и основные свойства

Рассмотрим сначала ситуацию, когда нижний предел интегрирования конечен, а верхний равен $+\infty$, другие варианты обсудим несколько позднее. Для $f(x)$, непрерывной при всех интересующих нас $x$, рассмотрим интеграл

\begin{equation} I=\int _a^{+\infty}f(x)dx. \quad(19) \label{inf1} \end{equation}

Прежде всего надо установить смысл этого выражения. Для этого введем функцию

\[ I(N)=\int _a^{N}f(x)dx \]

и рассмотрим ее поведение при $N\rightarrow +\infty$.

Определение. Пусть существует конечный предел

\[ A=\lim_{N \rightarrow +\infty}I(N)=\lim_{N \rightarrow +\infty}\int _a^{N}f(x)dx. \]

Тогда говорят, что несобственный интеграл 1 рода (19) является сходящимся и ему приписывают значение $A$, саму функцию называют интегрируемой на интервале $\left[ a, \, +\infty \right)$. Если же указанного предела не существует или он равен $\pm \infty$, то говорят, что интеграл (19) расходится.

Рассмотрим интеграл

\[ I=\int _0^{+\infty} \frac{dx}{1+x^2}. \]

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}. \]

В данном случае известна первообразная подинтегральной функции, так что

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}=arctgx|_0^{N}=arctgN. \]

Известно, что $arctg N \rightarrow \pi /2 $ при $N \rightarrow +\infty$. Таким образом, $I(N)$ имеет конечный предел, наш несобственный интеграл сходится и равен $\pi /2$.

Сходящиеся несобственные интегралы 1 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \, +\infty \right)$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}\left(f(x)+g(x)\right)dx=\int _a^{+\infty}f(x)dx+\int _a^{+\infty}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}C\cdot f(x)dx=C \cdot \int _a^{+\infty}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, причем на этом интервале $f(x)>0$, то \[ \int _a^{+\infty} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любого $b>a$ интеграл \[ \int _b^{+\infty} f(x)dx \] сходится, причем \[ \int _a^{+\infty}f(x)dx=\int _a^{b} f(x)dx+\int _b^{+\infty} f(x)dx \] (аддитивность интеграла по интервалу).

Справедливы также формулы замены переменной, интегрирования по частям и т.д. (с естественными оговорками).

Рассмотрим интеграл

\begin{equation} I=\int _1^{+\infty}\frac{1}{x^k}\,dx. \quad (20) \label{mod} \end{equation}

Введем функцию

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_1^N= \frac{N^{1-k}}{1-k}-\frac{1}{1-k} \]

при $k \neq 1$,

\[ I(N)=\int _1^{N}\frac{1}{x}\,dx\,=lnx|_1^N= lnN \]

при $k = 1$. Рассматривая поведение при $N \rightarrow +\infty$, приходим к выводу, что интеграл (20) сходится при $k>1$, а при $k \leq 1$ - расходится.

Рассмотрим теперь вариант, когда нижний предел интегрирования равен $-\infty$, а верхний конечен, т.е. рассмотрим интегралы

\[ I=\int _{-\infty}^af(x)dx. \]

Однако этот вариант можно свести к предыдущему, если сделать замену переменных $x=-s$ и поменять затем пределы интегрирования местами, так что

\[ I=\int _{-a}^{+\infty}g(s)ds, \]

$g(s)=f(-s)$. Рассмотрим теперь случай, когда имеется два бесконечных предела, т.е. интеграл

\begin{equation} I=\int _{-\infty}^{+\infty}f(x)dx, \quad (21) \label{intr} \end{equation}

причем $f(x)$ непрерывна при всех $x \in \mathbb{R}$. Разобъем интервал на две части: возьмем $c \in \mathbb{R}$, и рассмотрим два интеграла,

\[ I_1=\int _{-\infty}^{c}f(x)dx, \quad I_2=\int _{c}^{+\infty}f(x)dx. \]

Определение. Если оба интеграла $I_1$, $I_2$ сходятся, то интеграл (21) называется сходящимся, ему приписывают значение $I=I_1+I_2$ (в соответствии с аддитивностью по интервалу). Если хотя бы один из интегралов $I_1$, $I_2$ расходится, интеграл (21) называется расходящимся.

Можно доказать, что сходимость интеграла (21) не зависит от выбора точки $c$.

Несобственные интегралы 1 рода с интервалами интегирования $\left(-\infty, \, c \right]$ или $(-\infty, \, +\infty)$ также обладают всеми стандартными свойствами определенных интегралов (с соответствующей переформулировкой, учитывающей выбор интервал интегрирования).

10.1.2 Признаки сходимости несобственных интегралов 1 рода

Теорема (первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x>a$, причем $0 a$. Тогда

1. Если интеграл \[ \int _a^{+\infty}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{+\infty}f(x)dx. \] 2. Если интеграл \[ \int _a^{+\infty}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{+\infty}g(x)dx. \]

Теорема (второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x>a$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{+\infty}f(x)dx, \quad \int _a^{+\infty}g(x)dx \]

сходятся или расходятся одновременно.

Рассмотрим интеграл

\[ I=\int _1^{+\infty}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования. Далее, при $x \rightarrow +\infty$ имеем:

$\sin x$ является "малой" поправкой в знаменателе. Точнее, если взять $f(x)=1/(x+\sin x)$, \, $g(x)=1/x$, то

\[ \lim _{x \rightarrow +\infty}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +\infty}\frac{x}{x+\sin x}=1. \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _1^{+\infty}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл расходится.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{+\infty}e^{-ax}\,dx. \] 2. \[ \int _{0}^{+\infty}xe^{-x^2}\,dx. \] 3. \[ \int _{-\infty}^{+\infty}\frac{2xdx}{x^2+1}. \] 4. \[ \int _{0}^{+\infty}\frac{xdx}{(x+2)^3}. \] 5. \[ \int _{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}. \] 6. \[ \int _{1}^{+\infty}\frac{lnx}{x^2}\,dx. \] 7. \[ \int _{1}^{+\infty}\frac{dx}{(1+x)\sqrt{x}}. \] 8. \[ \int _{0}^{+\infty}e^{-\sqrt{x}}\,dx. \] 9. \[ \int _{0}^{+\infty}e^{-ax}\cos x\,dx. \] 10. \[ \int _{0}^{+\infty}\frac{xdx}{x^3+1}. \]

Тема НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

В теме «Определенный интеграл» было рассмотрено понятие определенного интеграла для случая конечного промежутка
и ограниченной функции
(см. теорему 1 из §3). Теперь займемся обобщением этого понятия для случаев бесконечного промежутка и неограниченной функции. Необходимость такого обобщения показывают, например, такие ситуации.

1. Если, используя формулу для длины дуги, попытаться вычислить длину четверти окружности
,
, то придем к интегралу от неограниченной функции:

, где
.

2. Пусть тело массой
движется по инерции в среде с силой сопротивления
, где
- скорость тела. Используя второй закон Ньютона (
, где
ускорение), получим уравнение:
, где
. Нетрудно показать, что решением этого (дифференциального!) уравнения является функция
Если нам потребуется вычислить путь, пройденный телом до полной остановки, т.е. до момента, когда
, то придем к интегралу по бесконечному промежутку:

§1. Несобственные интегралы 1-го рода

I Определение

Пусть функция
определена и непрерывна на промежутке
. Тогда для любого
она интегрируема на промежутке
, то есть существует интеграл
.

Определение 1 . Конечный или бесконечный предел этого интеграла при
называют несобственным интегралом 1-го рода от функции
по промежутку
и обозначают символом
. При этом, если указанный предел конечен, то несобственный интеграл называют сходящимся, в противном случае (
или не существует) – расходящимся.

Итак, по определению

Примеры

2.
.

3.
– не существует.

Несобственный интеграл из примера 1 сходится, в примерах 2 и 3 интегралы расходятся.

II Формула Ньютона – Лейбница для несобственного интеграла первого рода

Пусть
- некоторая первообразная для функции
(сущест-вует на
, т.к.
- непрерывна). Тогда

Отсюда ясно, что сходимость несобственного интеграла (1) равносильна существованию конечного предела
. Если этот предел обозначить
, то можно написать для интеграла (1) формулу Ньютона-Лейбница:

, где
.

Примеры .

5.
.

6. Более сложный пример:
. Сначала найдем первообразную:

Теперь можем найти интеграл , учитывая, что

:

III Свойства

Приведем ряд свойств несобственного интеграла (1), которые вытекают из общих свойств пределов и определенного интеграла:


IV Другие определения

Определение 2 . Если
непрерывна на
, то

.

Определение 3 . Если
непрерывна на
, то принимают по определению

(– произвольное),

причем несобственный интеграл в левой части сходится, если только оба ин-теграла в правой части сходятся.

Для этих интегралов, как и для интеграла (1) можно написать соответствующие формулы Ньютона – Лейбница.

Пример 7 .

§2. Признаки сходимости несобственного интеграла 1-го рода

Чаще всего несобственный интеграл вычислить по определению не-возможно, поэтому используют приближенное равенство

(для больших ).

Однако, это соотношение имеет смысл лишь для сходящихся интегралов. Необходимо иметь методы выяснения поведения интеграла минуя определение.

I Интегралы от положительных функций

Пусть
на
. Тогда определенный интеграл
как функция верхнего предела есть функция возрастаю-щая (это следует из общих свойств определенного интеграла).

Теорема 1 . Несобственный интеграл 1 го рода от неотрицательной функ-ции сходится тогда и только тогда, когда функция
остается ограниченной при увеличении.

Эта теорема – следствие общих свойств монотонных функций. Практического смысла теорема почти не имеет, но позволяет получить т.н. признаки сходимости.

Теорема 2 (1-й признак сравнения). Пусть функции
и
непре-рывны на
и удовлетворяют неравенству
. Тогда:

1) если интеграл
сходится, то и
сходится;

2) если интеграл
расходится, то и
расходится.

Доказательство . Обозначим:
и
. Так как
, то

. Пусть интеграл
сходится, тогда (в силу теоремы 1) функция
‒ ограничена. Но тогда и
ограничена, а значит, интеграл
тоже сходится. Аналогично доказывается и вторая часть теоремы.

Этот признак не применим в случае расходимости интеграла от
или сходимости интеграла от
. Этот недостаток отсутствует у 2-го признака сравнения.

Теорема 3 (2-й признак сравнения). Пусть функции
и
непрерывны и неотрицательны на
. Тогда, если
при
, то несобственные интегралы
и
сходятся или расходятся одновременно.

Доказательство . Из условия теоремы получим такую цепочку равно-сильных утверждений:

, ,


.

Пусть, например,
. Тогда:

Применим теорему 2 и свойство 1) из §1 и получим утверждение теоремы 3.

В качестве эталонной функции, с которой сравнивают данную, высту-пает степенная функция
,
. Предлагаем студентам самим доказать, что интеграл

сходится при
и расходится при
.

Примеры . 1.
.

Рассмотрим подынтегральную функцию на промежутке
:

,
.

Интеграл
сходится, ибо
. По 2-му признаку сравнения сходится и интеграл
, а в силу свойства 2) из §1 сходится и исход-ный интеграл.

2.
.

Так как
, тоcуществует
такое, что при

. Для таких значений переменной:

Известно, что логарифмическая функция растет медленнее степенной, т.е.

,

а значит, начиная с некоторого значения переменной, эта дробь меньше 1. Поэтому

.

Интеграл сходится как эталонный. В силу 1-го признака сравнения сходится и
. Применяя 2-й признак, получим, что и интеграл
сходится. И снова свойство 2) из §1 доказывает сходимость исходного интеграла.

Несобственные интегралы

Лк5,6(4ч)

Понятие было введено в предположении, что:

1) промежуток интегрирования конечен (отрезок [a ;b ]),

2) функция f (x ) ограничена на [a ;b ].

Такой определенный интеграл называется собственным (слово ²собственный² опускают). Если какое-либо из этих условий не выполняется, то определенный интеграл называется несобственным . Различают несобственные интегралы I и II рода.

1.Определение несобственного интеграла первого рода

Обобщим понятие определённого интеграла на бесконечный промежуток. Пусть f (x ) определена на промежутке [a ;+¥) и интегрируема в каждой конечной его части, т. е. . В этом случае существует интеграл . Ясно, что есть функция, определённая на [a ;+¥). Рассмотрим . Этот предел может существовать и не существовать, но независимо от этого он называетянесобственным интегралом первого рода и обозначается .

Определение. Если существует и конечен, то несобственный интеграл называется сходящимся , а значение этого предела есть значение несобственного интеграла. . Если не существует или равен ¥, то несобственный интеграл называется расходящимся .

Аналогично определяются ,

Пример 1. Исследовать на сходимость интеграл , .

D непрерывна на [a ;+¥) .

Если , то , а Þ интеграл сходится.

Если , то интеграл расходится.

Итак , сходится при и ;

расходится при .D

2. Свойства несобственного интеграла первого рода

Так как несобственный интеграл определяется как предел интеграла Римана, то на несобственный интеграл переносятся все свойства, которые сохраняются при предельном переходе, то есть выполняются свойства 1-8. Теорема о среднем значении не имеет смысла.

3. Формула Ньютона – Лейбница

Пусть функция f непрерывна на [a ;+¥), F - первообразная и существует . Тогда справедлива формула Ньютона – Лейбница:

В самом деле,

Пример 2. D . D

Геометрический смысл несобственного интеграла I рода

Пусть функция f неотрицательна и непрерывна на [a ;+¥) и несобственный интеграл сходится. равен площади криволинейной трапеции с основанием [a ;b ], а равен площади с основанием [a ;+¥).

4. Несобственные интегралы от неотрицательных функций

Теорема 1. Пусть f (x )³0 на [a ;+¥) и интегрируема на [a ;b ] "b >a . Для сходимости несобственного интеграла необходимо и достаточно, чтобы множество интегралов было ограничено сверху, причём .

Доказательство.

Рассмотрим функцию , a £b . Так как f (x )³0, то F не убывает Действительно, "b 1 , b 2: a £b 1 <b 2 в силу того, что , выполнено

По определению несобственный интеграл сходится тогда и только тогда, когда существует конечный . Т.к. F (b ) не убывает, то этот предел существует тогда и только тогда, когда функция F (b ) ограничена сверху, то есть $М >0: "b >a . При этом

Расходимость несобственного интеграла означает, что , то есть .

Теорема 2. Пусть функции f и g неотрицательны на [a ;+¥) и интегрируемы на [a ;b ] "b >a . Пусть на [a ;+¥) выполнено

1) из сходимости интеграла (2) следует сходимость интеграла (3);

2) из расходимости интеграла (3) следует расходимость интеграла (2).

Доказательство.

Из (1) "b >a .

1) Пусть интеграл (2) сходится. По теореме 1 множество ограничено ограничено ограничено. По теореме1 сходится.

2) Пусть расходится. Докажем, что расходится интеграл (2). От противного. Предположим, что интеграл (2) сходится, но тогда по первой части теоремы сходится интеграл (3) – противоречие с условием.

Теорема 3. Пусть функции f и g неотрицательны на [a ;+¥) и интегрируемы на [a ;b ] "b >a . Если существует (0£k £¥), то

1) из сходимости интеграла при k <¥ следует сходимость интеграла ,

2) из расходимости интеграла при k >0 следует расходимость интеграла .

Доказательство.

1) Пусть k <¥ и сходится.

Т. к. сходится, то сходится, значит, сходится . Тогда в силу (4) сходится . Отсюда сходится.

2) Пусть k >0 и расходится. В этом случае - конечное число. Если допустим противное – что интеграл сходится, то по доказанному в п. 1) получим, что тоже сходится, а это противоречит условию. Следовательно, сделанное предположение неверно, и расходится. сходится абсолютно, то по определению сходится . Значит, сходится. Но сходится.

Лекция 24. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

План:

  1. Понятие несобственного интеграла
  2. Несобственные интегралы I рода.
  3. Несобственные интегралы II рода.
  1. Понятие несобственного интеграла

Рассмотрим нахождение обоих видов несобственных интегралов.

Пусть задана функция y=f(x) , непрерывная на промежутке [a;+∞ ). Если существует конечный предел , то его называют несобственным интегралом первого рода и обозначают .

сходится расходится .

Геометрический смысл несобственного интеграла I рода заключается в следующем: если сходится (при условии, что f(x) ≥0), то он представляет собой площадь "бесконечно длинной" криволинейной трапеции (рис. 24.1).

Аналогично вводится понятие несобственного интеграла с бесконечным нижним пределом интегрирования для непрерывной на промежутке (-∞ ;b ] функции: = .

Несобственный интеграл с двумя бесконечными пределами интегрирования определяется формулой: = + , где с – произвольное число.

Рассмотрим примеры нахождения несобственных интегралов I рода.

Пример 24.1.

Решение . Для нахождения несобственного интеграла с бесконечной верхней границей от непрерывной функции воспользуемся формулой: = . Тогда = . Сначала вычислим интеграл от е х :

= = = =∞. Получили, что несобственный интеграл расходится.

Ответ : расходится.

Пример 24.2. Вычислите несобственный интеграл или установите его расходимость: .

Решение . Подынтегральная функция непрерывна на промежутке (-∞ ;- 1]. Для нахождения несобственного интеграла I рода с бесконечной нижней границей воспользуемся формулой: = . Тогда = . Вычислим интеграл, содержащийся под знаком предела: = . Избавимся от знака "минус", поменяв границы интегрирования местами:

1. Получили, что рассматриваемый несобственный интеграл сходится.

Ответ : =1.

  1. Несобственные интегралы II рода.

Пусть задана функция y=f(x) , непрерывная на промежутке [a;b ). Пусть b – точка разрыва второго рода. Если существует конечный предел , то его называют несобственным интегралом второго рода и обозначают .



Таким образом, по определению = .

Если найденный предел равен конечному числу, то говорят, что несобственный интеграл сходится . Если указанный предел не существует или бесконечен, то говорят, что интеграл расходится .

Геометрический смысл несобственного интегралаII рода , где b – точка разрыва второго рода, f(x) ≥0, заключается в следующем: если сходится, то он представляет собой площадь "бесконечно высокой" криволинейной трапеции (рис. 24.2).

Аналогично вводится понятие несобственного интеграла II рода для непрерывной на промежутке (a;b ]функции при условии, что а – точка разрыва второго рода: = .

Пример 24.3. Вычислите несобственный интеграл II рода: .

Решение . Подынтегральная функция непрерывна на промежутке (0;1], причем х= 0 - точка разрыва второго рода (). Для вычисления несобственного интеграла воспользуемся формулой: = . Получим, что

= = = = = = ∞. Видим, что несобственный интеграл II рода расходится.

Ответ : расходится.

Контрольные вопросы:

  1. Что называют несобственным интегралом?
  2. Какие интегралы называются несобственными интегралами первого рода?
  3. В чем заключается геометрический смысл несобственного интеграла первого рода?
  4. Какие несобственные интегралы называют сходящимися, а какие расходящимися?
  5. Какие интегралы называются несобственными интегралами второго рода?
  6. В чем заключается геометрический смысл несобственного интеграла второго рода?

СПИСОК ЛИТЕРАТУРЫ:

1. Абдрахманова И.В. Элементы высшей математики: учеб. пособие – М.: Центр интенсивных технологий образования, 2003. – 186 с.

2. Алгебра и начала анализа (Ч.1, Ч.2): Учебник для ССУЗов / под ред. Г.Н.Яковлева. – М.: Наука, 1981.

3. Александрова Н.В. Математические термины. Справочник.- М.: Высш. школа, 1978. - 190 с.

4. Валуце И.И., Дилигул Г.Д. Математика для техникумов на базе средней школы: Учеб. пособие. – М.: Наука, 1989. – 576 с.

5. Григорьев В.П., Дубинский Ю.А. Элементы высшей математики: Учеб. для студ. учреждений СПО. - М.: Издательский центр "Академия", 2004. – 320с.

6. Лисичкин В.Т., Соловейчик И.Л. Математика: учеб. пособие для техникумов. – М.: Высш. школа, 1991. – 480 с.

7. Луканкин Г.Л., Мартынов Н.Н., Шадрин Г.А., Яковлев Г.Н. Высшая математика: учеб. пособие для студентов пед. институтов. – М.: Просвещение, 1988. – 431 с.

8. Письменный Д.Т. Конспект лекций по высшей математике: Ч.1. – М.:Айрис-пресс, 2006.- 288 с.

9. Филимонова Е.В. Математика: учеб. пособие для ссузов. – Ростов н/Д: Феникс, 2003. – 384 с.

10. Шипачев В.С. Высшая математика: учебник для вузов. – М.: Высшая школа, 2003. – 479 с.

11. Шипачев В.С. Курс высшей математики: высшее образование. – М.: ПРОЮЛ М.А.Захаров, 2002. – 600 с.

12. Энциклопедия для детей. Т.11. Математика / Глав. ред. М.В.Аксенова. - М.: Аванта+, 2000.- 688 с.

Loading...Loading...