Как возникли многоклеточные организмы? Возникновение многоклеточности Какие многоклеточные организмы появились в океане.

Одноклеточные (жгутиковые, амебы, инфузории и др.) живут и в наши дни во всех водоемах. Большей частью они совсем не видны простым глазом. Лишь некоторые из них заметны в воде в виде светлых подвижных точек. Кроме многих свойств - движения, питания, раздражимости, роста, они обладают и способностью размножаться. Известны два способа размножения - половой и бесполый.

При половом способе два одноклеточных организма чаще всего сливаются в одну общую клетку (зиготу), образуя новый организм, который вскоре в свою очередь разделяется на два или множество других самостоятельных организмов.

При бесполом размножении одноклеточный организм, например, тот же жгутиконосец эвглена, делится на две части без участия второго себе подобного «партнера». Такое размножение повторяется много раз подряд. Жгутиконосцев становится так много, что вода в пруду, в луже «зацветает», становится мутно-зеленоватой от их массы. При половом же размножении, повторяем, две клетки, то есть два жгутиконосца, сливаются навсегда, протоплазма с протоплазмой, ядро с ядром в одну общую клетку, которая лишь позже делится.

Присмотримся к жизни и размножению некоторых из них. Среди одноклеточных жгутиковых есть виды, у которых деление организма на две клетки как бы замедляется. Только что разделившись, они должны бы разойтись в разные стороны и жить до следующего деления самостоятельно. Но у данных видов (из семейства вольвоксовых) этого не происходит. Клетки не расходятся и успевают разделиться еще раз, а то и два, три раза, прежде чем разойтись. Таким образом, можно увидеть 4, а то и 8, 16 клеток, не расходящихся и плавающих комочком вместе. Такая совместная жизнь называется колониальной, а сама группа одноклеточных - колонией. Таким образом, кроме одиночных одноклеточных (их большинство) существуют простые временные колонии из 4-8 и более сложные 16-32 клеток, которые, не расходясь, подолгу живут вместе. Все клетки в таких колониях одинаковы.

Но существуют и другие формы, состоящие из 3600 клеток. Одна из таких колоний называется Вольвокс. Это сообщество «клеток, будучи размером почти с маковое зерно или булавочную головку, видно без микроскопа. Интересно, что в такой колонии не все клетки равноценны и одинаковы. Большинство из них потеряло способность размножаться половым путем. Они двигают колонию, загребая воду нитевидными жгутиками (ресничками), питают друг друга, но размножаться могут только делением. Эти клетки лежат на поверхности колонии.

Другие клетки, способные размножаться половым путем, располагаются в глубине шарика, получая питательные вещества от оставшихся на поверхности. Таких оказывается 20-30 из трех с половиной тысяч. Но лежащие в глубине особи оказываются не все одинаковыми. Отдельные из группы еще делятся, становясь очень мелкими, сохраняя жгутики и способность к движению. Другие растут, укрупняются, теряют жгутики-реснички, становясь неподвижными. При половом размножении сливаются попарно только одна большая неподвижная клетка (женская) с одной мелкой подвижной (мужской). Таким образом, в этих сложных колониях существуют, по крайней мере, три вида клеток (поверхностные, женские, мужские) и ясно, что они друг без друга жить не могут.

Считают, что и на заре зарождения и развития жизни возникали подобные колонии. В них клетки еще больше разделялись по выполняемым функциям, как говорят, специализировались. В колонии такой могли, например, обособиться, мужские и женские клетки, то есть несущие функции размножения, затем чувствующие, двигательные, питающие и другие. Жить самостоятельно отдельно от других ни одна клетка перечисленных специальностей уже не могла. С этого времени колония приобрела новое качество. Она превратилась в многоклеточный организм. И дело не только в том, что клеток стало больше. Главное в том, что отдельные из них, потеряв самостоятельность, приобрели возможность жить, дополняя друг друга, только сообща.

Таким образом, наблюдая и исследуя строение и жизнь современных сложных колоний, мы можем судить о том, как возникали многоклеточные организмы. Их предками были тоже колонии одноклеточных, не сохранившиеся до наших дней - но вольвокс, живущий поныне, но подобные ему, еще более сложные колонии. Так колония стала единым, многоклеточным организмом, а группы его клеток разных специализаций стали тканями такого организма.

Какие же многоклеточные животные возникали из различных колоний вначале? Чтобы ответить на этот вопрос следует обратиться к организмам, стоящим на нижних ступенях жизни.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Происхождение многоклеточных до сих пор окончательно не выяснено. Еще в прошлом веке ученые дискутировали по поводу происхождения многоклеточных, выдвигая разные, иногда даже фантастические, гипотезы. До настоящего времени сохранили свое значение лишь несколько из них, прежде всего те, где признается, что предками многоклеточных были простые. Самыми известными гипотезами происхождения многоклеточных являются:

  • Гипотеза гастрея (Э. Геккель).
  • Гипотеза плакулы (А. Бючли).
  • Гипотеза билатогастреи (Т. Егерстен).
  • Гипотеза фагоцителлы (И. И. Мечников).

Гипотеза гастреи

Так, в 70-х годах позапрошлого века известный немецкий биолог Э. Геккель развил систему взглядов на происхождение многоклеточных от колониальных жгутиковых - гипотезу гастреи.

Согласно этой гипотезе предками многоклеточных были колонии жгутиковых, подобные современным. Геккель опирался на данные эмбриологии и предоставлял основным этапом эмбрионального развития организма филогенетического значения. Подобно тому, как в онтогенезе многоклеточный организм образуется из одной оплодотворенной яйцеклетки, в результате дробления превращается в многоклеточные стадии - морулы, затем бластула и гаструлу, так и в историческом развитии - сначала возникли одноклеточные амебообразные организмы - цитеи, затем от таких организмов развились колонии из нескольких особей - море, которые впоследствии превратились в шаровидные однослойные колонии - бластеи, которые имели на поверхности жгутики и плавали в толще воды.

Наконец, выпячивание стенки бластеи внутрь (инвагинация) привело к возникновению двухслойного организма - гастрея. Внешний слой ее клеток имел жгутики и выполнял локомоторной функции, а. внутренний выстилал первичный кишечник и выполнял функцию пищеварения. Так, по гипотезе Геккеля, одновременно возникли первичный рот (бластопор) и закрытая первичная кишка. Поскольку во времена создания этой гипотезы единственным способом гаструляции считалась инвагинация, свойственная более высокоорганизованным животным (ланцетник, асцидии), Геккель утверждал, что и в филогенезе образования многоклеточных гастрите происходило именно таким образом. С двухслойного плавающего организма - гастрея, которая осела на субстрат на аборальный полюс, началось развитие кишечнополостных, что является, по мнению Геккеля, самыми примитивными многоклеточными, от которых возникли все остальные многоклеточные.

В свое время гипотеза гастрея была достаточно обоснованной. Гекель выдвинул ее еще до открытия И. И. Мечниковым внутриклеточного пищеварения. Тогда считалось, что пища переваривается только в полости кишечника, поэтому и первичную, энтодерму представляли в виде эпителия первичной кишки.

Замечание 1

Гипотеза гастрея сыграла большую роль в развитии эволюционной зоологии. В ней впервые было обосновано единство происхождения всех многоклеточных животных.

Гипотезу поддержал ряд зоологов, и с определенными дополнениями ее принимает и немало современных ученых, в частности в Западной Европе, она изложена также во многих зарубежных учебниках зоологии.

Гипотеза плакулы

Одной из модификаций гипотезы гастрея была гипотеза плакулы, предложенная английским ученым О. Бючли (1884), который считал, что многоклеточные происходят из двухслойной плоской колонии простейших (плакулы). Обращенный к субстрату слой плакулы выполнял функцию питания, поглощая пищевые частицы со дна. Изгибаясь одной стороной вверх, двухслойная плакула превратилась в гастрееподобный организм.

Гипотеза билатерогастреи

Достаточно популярной среди современных ученых является другая модификация гипотезы гастрея, выдвинутая шведским ученым Т. Егерстеном в 1955-1972 гг., известная под названием гипотезы билатерогастреи. Согласно этой гипотезе удаленным предком многоклеточных животных была шарообразная колония растительных жгутиковых, похожая на Volvox, которая плавала в поверхностных слоях воды и могла питаться автотрофно и гетеротрофно - за счет фагоцитоза мелких органических частиц. Колония, как и современный Volvox, имела передне-заднюю полярность. По мнению Егерстена, такая бластея перешла к оептосного типа жизни, осев на дно боком, который стал плоским.

Таким образом возникла донное билатеральносиметричное (такое, через тело которого можно провести одну плоскость симметрии, делящую его на две зеркально подобные половины) бластулоподибное животное - билатеробластея. Поскольку освещенность на дне недостаточно для фотосинтеза, билатеробластея питалась преимущественно гетеротрофно, фагоцитирующими питательные частицы со дна клетками вентрального эпителия. Во время перехода к питанию крупной добычей, эти животные втягивали вентральный слой, образуя временную полость, в которую попадала добычу и где происходило ее переваривание. Постепенно такая временная полость стала постоянной кишечной полостью.

От билатерогастреи происходят рубки, которые, по мнению Егерстена, имеют кишечную полость. Позже, в процессе эволюции билатерогастреи появились три пары боковых впячиваний в стенках кишечника. От такой усложненной билатерогастреи происходят все другие типы животных:

  1. кишечнополостные (первичные коралловые полипы) с тремя парами септ в гастральной полости,
  2. целомические животные с тремя парами целом.

Паренхимные и первиннопорожниини животные, по этой гипотезе, вторично утратили целом.

Гипотеза Мечникова

Сейчас наиболее обоснованной и альтернативной гипотезе гастрея можно считать гипотезу отечественного ученого И. И. Мечникова, разработанную в 1877-1886 гг. Изучая эмбриональное развитие низших многоклеточных - губок и кишечнополостных, Мечников установил, что в процессе образования двухслойной стадии в них происходит не впячивания, а в основном иммиграция - вползания отдельных клеток стенки бластулы в ее полости. Этот примитивный процесс образования гаструлы Мечников считал первичным, а инвагинацию - следствием сокращения и упрощения развития, имевшие место в процессе эволюции.

Замечание 2

Предками многоклеточных, по гипотезе Мечникова, были шарообразные колонии гетеротрофных жгутиковых, которые плавали в воде, питались фагоцитирующими мельчайшими частицами.

Прототипом такой колонии могли быть пелагические шаровидные колонии воротниковой жгутиковых (Sphaeroeca volvox). Отдельные клетки, захватив питательную дольку, теряли жгутик, превращаясь в амебоидных, и погружались вглубь колонии, заполненной бесструктурную киселем. Затем они могли возвращаться на поверхность.

Такое явление наблюдается в современных губок, жгутиковые клетки хоаноциты которых могут, заполнившись пищей, превращаться в амебоидные и мигрировать в паренхимы, где происходит пищеварение, а затем возвращаться на место. Со временем клетки дифференцировались на те, которые обеспечивали преимущественно колонии, и те, которые питались и кормили других. Колония уже не имела вида полого шара - внутри находилось скопление фагоцитов.

Из современных животных к организмам такого типа ближайшие является воротниковые жгутиковые (Choanofiagellida) Proterospongia haeckeli, которые образуют колонию, во внешнем слое которой содержатся воротниковые жгутиковые, а во внутреннем - амебоидные клетки. Постепенно временное дифференцировки клеток приобрело постоянный характер и колония одноклеточных превратилась в многоклеточный организм, который должен два слоя клеток:

  1. наружный (Базальное) - кинобласт
  2. внутренний (амебоидное) - фагоцытобласт.

Питание такого организма происходило за счет захвата жгутиковыми клетками кинобласта органических частиц из толщи воды и передачи их амебоидным клеткам фагоцитобласта. Этот гипотетический многоклеточный организм Мечников назвал фагоцителой, желая подчеркнуть роль -фагоцитозу в его возникновении.

Живой мир наполнен головокружительным множеством живых существ. Большинство организмов состоят только из одной клетки и не видимы невооруженным глазом. Многие из них становятся заметными исключительно под микроскопом. Другие, такие как кролик, слон или сосна, а также человек, сделаны из многих клеток, и эти многоклеточные организмы также в огромном количестве населяют весь наш мир.

Строительные блоки жизни

Структурными и функциональными единицами всех живых организмов являются клетки. Их еще называют строительными блоками жизни. Все живые организмы состоят из клеток. Эти структурные единицы были открыты Робертом Гуком еще в 1665 году. В организме человека насчитывается около ста триллионов клеток. Размер одной составляет около десяти микрометров. Ячейка содержит клеточные органеллы, которые контролируют ее активность.

Существуют одноклеточные и многоклеточные организмы. Первые состоят из одной клетки, например бактерии, а вторые включают растения и животных. Количество ячеек зависит от вида. Размер большинства клеток растений и животных клетках составляет от одного до ста микрометров, поэтому они видны под микроскопом.

Одноклеточные организмы

Эти крошечные существа состоят из одной клетки. Амебы и инфузории являются самыми старыми формами жизни, которые существовали еще около 3,8 миллиона лет назад. Бактерии, археи, простейшие, некоторые водоросли и грибы являются основными группами одноклеточных организмов. Существует две основные категории: прокариоты и эукариоты. Они также различаются по размеру.

Самые маленькие составляют около трехсот нанометров, а некоторые могут достигать размеров до двадцати сантиметров. Такие организмы обычно имеют реснички и жгутики, которые помогают им при перемещении. Они имеют простой корпус с базовыми функциями. Размножение может быть как бесполое, так и половое. Питание осуществляется обычно в процессе фагоцитоза, где частицы еды поглощаются и хранятся в специальных вакуолях, которые присутствуют в организме.

Многоклеточные организмы

Живые существа, состоящие из более чем одной клетки, называются многоклеточными. Они состоят из единиц, которые идентифицируются и присоединяются друг к другу, образуя сложные многоклеточные организмы. Большинство из них видны невооруженным глазом. Такие организмы, как растения, некоторые животные и водоросли, появляются из одной клетки и вырастают в многоцепочечные организации. Обе категории живых существ, прокариоты и эукариоты, могут проявлять многоклеточность.

Механизмы возникновения многоклеточности

Существует три теории для обсуждения механизмов, с помощью которых может возникнуть многоклеточность:

  • Симбиотическая теория утверждает, что первая клетка многоклеточного организма возникла из-за симбиоза различных видов одноклеточных, каждый из которых выполняет различные функции.
  • Синцитиальная теория утверждает, что многоклеточный организм не смог бы развиться из одноклеточных существ с несколькими ядрами. Такие простейшие, как инфузория и слизистые грибы, имеют несколько ядер, тем самым поддерживая эту теорию.
  • Колониальная теория утверждает, что симбиоз многих организмов одного и того же вида приводит к эволюции многоклеточного организма. Она была предложена Геккелем в 1874 году. Большинство многоклеточных образований происходит вследствие того, что клетки не могут отделиться после процесса деления. Примерами, подтверждающими эту теорию, являются водоросли вольвокс и эудорина.

Преимущества многоклеточности

Какие организмы - многоклеточные или одноклеточные - имеют больше преимуществ? На этот вопрос ответить достаточно сложно. Многоклеточность организма позволяет ему превышать предельные размеры, увеличивает сложность организма, позволяя дифференцировать многочисленные клеточные линии. Размножение происходит преимущественно половым путем. Анатомия многоклеточных организмов и процессы, которые в них происходят, являются достаточно сложными из-за наличия различных типов клеток, контролирующих их жизнедеятельность. Возьмем, к примеру, деление. Этот процесс должен быть точным и слаженным, чтобы предотвратить ненормальный рост и развитие многоклеточного организма.

Примеры многоклеточных организмов

Как уже говорилось выше, многоклеточные организмы бывают двух видов: прокариоты и эукариоты. К первому относят в основном бактерий. Некоторые цианобактерии, такие как чара или спирогира, являются также многоклеточными прокариотами, иногда их называют еще колониальными. Большинство эукариотических организмов также состоят из множества единиц. Они имеют хорошо развитую структуру тела, и у них есть специальные органы для выполнения определенных функций. Большинство хорошо развитых растений и животных являются многоклеточными. Примерами могут быть практически всех виды голосеменных и покрытосеменных растений. Почти все животные являются многоклечточными эукариотами.

Особенности и признаки многоклеточных организмов

Существует масса признаков, по которым можно с легкостью определить, является ли организм многоклеточным или нет. Среди можно выделить следующие:

  • У них достаточно сложная организация тела.
  • Специализированные функции выполняют различные клетки, ткани, органы или системы органов.
  • Разделение труда в организме может быть на клеточном уровне, на уровне тканей, органов и уровне систем органов.
  • В основном это эукариоты.
  • Травмы или гибель некоторых клеток глобально не влияет на организм: пораженные клетки будут заменены.
  • Благодаря многоклеточности организм может достигать больших размеров.
  • По сравнению с одноклеточными у них большая продолжительность жизненного цикла.
  • Основной тип размножения - половой.
  • Дифференциация клеток свойственна только многоклеточным.

Как растут многоклеточные организмы?

Все существа, от маленьких растений и насекомых до больших слонов, жирафов и даже людей, начинают свой путь как единичные простые клетки, называемые оплодотворенными яйцами. Чтобы вырасти в большой взрослый организм, они проходят через несколько определенных этапов развития. После оплодотворения яйца начинается процесс многоклеточного развития. На протяжении всего пути происходит рост и многократное деление отдельных ячеек. Эта репликация в конечном итоге создает конечный продукт, который является сложным, полностью сформированным живым существом.

Разделение клеток создает ряд сложных моделей, определяющихся геномами, которые являются практически идентичными во всех клетках. Это разнообразие приводит к экспрессии генов, которая контролирует четыре стадии развития клеток и эмбрионов: пролиферацию, специализацию, взаимодействие и движение. Первая включает в себя репликацию многих клеток из одного источника, вторая имеет отношение к созданию клеток с выделенными, определенными характеристиками, третья включает в себя распространение информации между ячейками, а четвертая отвечает за размещение клеток по всему телу для образования органов, тканей, костей и других физических характеристик развитых организмов.

Несколько слов о классификации

Среди многоклеточных существ выделяют две большие группы:

  • беспозвоночные (губки, кольчатые черви, членистоногие, моллюски и другие);
  • хордовые (все животные, у которых есть осевой скелет).

Важным этапом за всю историю планеты стало появление многоклеточности в процессе эволюционного развития. Это послужило мощным толчком для увеличения биологического разнообразия и его дальнейшего развития. Главным признаком многоклеточного организма является четкое распределение клеточных функций, обязанностей, а также установка и налаживание устойчивых и прочных контактов между ними. Другими словами, это многочисленная колония клеток, которая в силах сохранять фиксированное положение на протяжении всего жизненного цикла живого существа.

У представителей этого подцарства тело состоит из множества клеток, выполняющих различные функции. В связи со специализацией клетки многоклеточных обычно теряют способность к самостоятельному существованию. Целостность организма обеспечивается путем межклеточных взаимодействий. Индивидуальное развитие, как правило, начинается с зиготы, характеризуется дроблением зиготы на множество клеток-бластомеров, из которых в дальнейшем формируется организм с дифференцированными клетками и органами.

Филогения многоклеточных

Происхождение многоклеточных от одноклеточных в настоящее время считается доказанным. Главным доказательством этого является почти полная идентичность структурных компонентов клетки многоклеточных животных структурным компонентам клетки простейших. Гипотезы происхождения многоклеточных подразделяются на две группы: а) колониальные, б) полиэргидные гипотезы.

Колониальные гипотезы

Сторонники колониальных гипотез считают, что переходной формой между одноклеточными и многоклеточными животными являются колониальные простейшие. Ниже перечисляются и кратко характеризуются гипотезы этой группы.

    Гипотеза «гастреи» Э. Геккеля (1874). Переходной формой между одноклеточными и многоклеточными животными является однослойная шаровидная колония жгутиковых. Геккель назвал ее «бластеей», так как строение этой колонии напоминает строение бластулы. В процессе эволюции от «бластеи» путем инвагинации (впячивания) стенки колонии происходят первые многоклеточные - «гастреи» (по строению сходны с гаструлой). «Гастрея» - плавающее животное, тело которого состоит из двух слоев клеток, имеет рот. Наружный слой жгутиковых клеток является эктодермой и выполняет двигательную функцию, внутренний слой - энтодермой и выполняет пищеварительную функцию. От «гастреи», по мнению Геккеля, происходят прежде всего кишечнополостные животные, от которых берут свое начало остальные группы многоклеточных. Доказательствами правильности своей гипотезы Э. Геккель считал наличие стадий бластулы и гаструлы на ранних стадиях онтогенеза современных многоклеточных.

    Гипотеза «плакулы» О. Бючли (1884) представляет собой модифицированный вариант гипотезы гастреи Геккеля. В отличие от Э. Геккеля, переходной формой между одноклеточными и многоклеточными животными этот ученый принимает пластинчатую однослойную колонию типа гониума. Первое многоклеточное - геккелевская «гастрея», но в процессе эволюции она образуется путем расслоения колонии и чашевидного прогибания двуслойной пластинки. Доказательствами гипотезы являются не только наличие стадий бластулы и гаструлы на ранних стадиях онтогенеза, но и строение трихоплакса, примитивного морского животного, открытого в 1883 году.

    Гипотеза «фагоцителлы» И.И. Мечникова (1882). Во-первых, И.И. Мечников открыл явление фагоцитоза исчитал этот способ переваривания пищи более примитивным, чем полостное пищеварение. Во-вторых, изучая онтогенез примитивных многоклеточных губок, он обнаружил, что гаструла у губок образуется не путем инвагинации бластулы, а путем иммиграции некоторых клеток наружного слоя в полость зародыша. Именно эти два открытия явились основой для данной гипотезы.

    За переходную форму между одноклеточными и многоклеточными животными И.И. Мечников также принимает «бластею» (однослойная шаровидная колония жгутиковых). От «бластеи» происходят первые многоклеточные - «фагоцителлы». «Фагоцителла» не имеет рта, тело ее состоит из двух слоев клеток, жгутиковые клетки наружного слоя выполняют двигательную функцию, внутреннего - функцию фагоцитоза. «Фагоцителла» образуется из «бластеи» путем иммиграции части клеток наружного слоя внутрь колонии. Прообразом, или живой моделью гипотетического предка многоклеточных - «фагоцителлы» - И.И. Мечников считал личинку губок - паренхимулу.

    Гипотеза «фагоцителлы» А.В. Иванова (1967) представляет собой дополненный вариант гипотезы Мечникова. Эволюция низших многоклеточных, по А.В. Иванову, происходит следующим образом. Переходной формой между одноклеточными и многоклеточными животными является колония воротничковых жгутиковых, не имеющая полости. От колоний воротничковых жгутиковых типа Proterospongia путем иммиграции части клеток наружного слоя внутрь образуются «ранние фагоцителлы». Тело «ранних фагоцителл» состоит из двух слоев клеток, не имеет рта, по строению является средним между строением паренхимулы и трихоплакса, ближе к трихоплаксу. От «ранних фагоцителл» происходят пластинчатые, губки и «поздние фагоцителлы». Наружный слой «ранних» и «поздних фагоцителл» представлен жгутиковыми клетками, внутренний - амебоидными клетками. В отличие от «ранних фагоцителл», «поздние фагоцителлы» имеют рот. От «поздних фагоцителл» происходят кишечнополостные и ресничные черви.

Полиэргидные гипотезы

Сторонники полиэргидных гипотез считают, что переходной формой между одноклеточными и многоклеточными животными являются полиэргидные (многоядерные) простейшие. По мнению И. Хаджи (1963), предками многоклеточных были многоядерные инфузории, первыми многоклеточными - плоские черви типа планарий.

Наиболее аргументированной является гипотеза «фагоцителлы» И.И. Мечникова, доработанная А.В. Ивановым.

Подцарство Многоклеточные подразделяется на три надраздела: 1) Фагоцителлообразные, 2) Паразои, 3) Эуметазои.

Loading...Loading...